

Embedded System Design

(R22D6802)

DIGITAL NOTES

M.TECH
(I YEAR – I SEM)

(2023-24)

 Department of Electronics and Communication Engineering

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India

EMBEDDED SYSTEM DESIGN
Course Objectives:

 Discuss the basic principles of ARM system design.

 Identify the major hardware components ARM data path architecture.

 Identify the design issues ARM based embedded system with the basic knowledge of

firmware, embedded OS & ARM architectures.

 Analyze the execution of instructions/program knowing the basic principles of ARM

architecture and assembly language.

 Compare programs written in C & assembly to execute on ARM platform.

UNIT –I:

ARM Architecture:

ARM Design Philosophy, Registers, Program Status Register, Instruction Pipeline, Interrupts and
Vector Table, Architecture Revision, ARM Processor Families.

UNIT –II:

ARM Programming Model – I:

Instruction Set: Data Processing Instructions, Addressing Modes, Branch, Load, Store Instructions,
PSR Instructions, Conditional Instructions.

UNIT –III:

ARM Programming Model – II:

Thumb Instruction Set: Register Usage, Other Branch Instructions, Data Processing Instructions,
Single-Register and Multi Register Load-Store Instructions, Stack, Software Interrupt Instructions

UNIT –IV:

ARM Programming:

Simple C Programs using Function Calls, Pointers, Structures, Integer and Floating Point Arithmetic,
Assembly Code using Instruction Scheduling, Register Allocation, Conditional Execution and Loops.

UNIT –V:
Memory Management:
Cache Architecture, Polices, Flushing and Caches, MMU, Page Tables, Translation, Access
Permissions, Context Switch.

TEXT BOOKS:

1. ARM Systems Developer’s Guides- Designing & Optimizing System Software – Andrew N.
Sloss, Dominic Symes, Chris Wright, 2008, Elsevier.
2. Professional Embedded ARM development-James A Langbridge, Wiley/Wrox

REFERENCE BOOKS:

1. Embedded Microcomputer Systems, Real Time Interfacing – Jonathan W. Valvano – Brookes
/ Cole, 1999, Thomas Learning.
2.ARM System on Chip Architecture, Steve Furber, 2nd Edition, Pearson

Course Outcomes:

 Become aware of the ARM Processor, Architecture, Registers, Instruction pipeline, Interrupts

and Instructions, Addressing modes and conditional instructions.

 Apply and analyze the applications in various processors and domains of embedded system.

 Ability to use advanced controllers using thumb instruction for embedded system design.

 Analyze and develop embedded hardware and software development cycles and tools.

 Understanding the concept of Memory management unit, integration methods and

hardwareand software design concepts associated with processor in Embedded Systems.

UNIT-I

ARM ARCHITECTURE

ARM

• ARM, previously Advanced RISC Machine, originally Acorn RISC Machine, is a family

of Reduced Instruction Set Computing (RISC) Architecture for Computer Processors.

• The ARM processor core is key component of many successful 32-bit embedded

systems.

The RISC design philosophy

The design philosophy aimed at delivering the following.

 simple but powerful instructions

 single cycle execution at a high clock speed

 intelligence in software rather than hardware

 Provide greater flexibility on reducing the complexity of instructions.

The ARM core uses RISC architecture.

The RISC philosophy is implemented with four major design rules:

1. Instructions – RISC processors have a reduced number of instruction classes. These

classes provide simple operations that can each execute in a single cycle. The compiler or

programmer synthesizes complicated operations (a divide operation) by combining

several simple instructions. Each instruction is a fixed length to allow the pipeline to

fetch future instructions before decoding the current instruction. In contrast, in CISC

processors the instructions are often of variable size and take many cycles to execute.

2. Pipelines —The processing of instructions is broken down into smaller units that can be

executed in parallel by pipelines. Ideally the pipeline advances by one step on each cycle

for maximum throughput. There is no need for an instruction to be executed by a mini

program called microcode as on CISC processors.

3. Registers—RISC machines have a large general-purpose register set. Any register can

contain either data or an address. In contrast, CISC processors have dedicated registers

for specific purposes.

4. Load-store architecture--The processor operates on data held in registers. Separate load

and store instructions transfer data between the register bank and external memory. In

contrast, with a CISC design the data processing operations can act on memory directly.

The ARM Design Philosophy

There are a number of physical features that have driven the ARM processor design.

1. Small to reduce power consumption and extend battery operation

2. High code density

3. Price sensitive and use slow and low-cost memory devices.

4. Reduce the area of the die taken up by the embedded processor.

5. Hardware debug technology

6. ARM core is not a pure RISC architecture

Registers:

ARM processors provide general-purpose and special-purpose registers. Some additional

registers are available in privileged execution modes.

In all ARM processors, the following registers are available and accessible in any processor

mode:

 13 general-purpose registers R0-R12.

 One Stack Pointer (SP).

 One Link Register (LR).

 One Program Counter (PC).

 One Application Program Status Register (APSR).

The amount of registers depends on the ARM version. According to the ARM Reference

Manual, there are 30 general-purpose 32-bit registers, with the exception of ARMv6-M and

ARMv7-M based processors. The first 16 registers are accessible in user-level mode, the

additional registers are available in privileged software execution (with the exception of

ARMv6-M and ARMv7-M). In this tutorial series we will work with the registers that are

accessible in any privilege mode: r0-15. These 16 registers can be split into two groups: general

purpose and special purpose registers.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473c/Babdfiih.html

R0-R12: can be used during common operations to store temporary values, pointers (locations to

memory), etc. R0, for example, can be referred as accumulator during the arithmetic operations

or for storing the result of a previously called function. R7 becomes useful while working with

syscalls as it stores the syscall number and R11 helps us to keep track of boundaries on the stack

serving as the frame pointer (will be covered later). Moreover, the function calling convention on

ARM specifies that the first four arguments of a function are stored in the registers r0-r3.

R13: SP (Stack Pointer). The Stack Pointer points to the top of the stack. The stack is an area of

memory used for function-specific storage, which is reclaimed when the function returns. The

stack pointer is therefore used for allocating space on the stack, by subtracting the value (in

bytes) we want to allocate from the stack pointer. In other words, if we want to allocate a 32 bit

value, we subtract 4 from the stack pointer.

R14: LR (Link Register). When a function call is made, the Link Register gets updated with a

memory address referencing the next instruction where the function was initiated from. Doing

this allows the program return to the “parent” function that initiated the “child” function call

after the “child” function is finished.

R15: PC (Program Counter). The Program Counter is automatically incremented by the size of

the instruction executed. This size is always 4 bytes in ARM state and 2 bytes in THUMB mode.

When a branch instruction is being executed, the PC holds the destination address. During

execution, PC stores the address of the current instruction plus 8 (two ARM instructions) in

ARM state, and the current instruction plus 4 (two Thumb instructions) in Thumb(v1) state. This

is different from x86 where PC always points to the next instruction to be executed.

Current Program Status Register

The Current Program Status Register (CPSR) holds the same program status flags as the APSR,

and some additional information.

The CPSR holds:

 The APSR flags.

 The processor mode.

 The interrupt disable flags.

 The instruction set state (ARM, Thumb, ThumbEE, or Jazelle®).

 The endianness state (on ARMv4T and later).

 The execution state bits for the IT block (on ARMv6T2 and later).

The Current Program Status Register is a 32-bit wide register used in the ARM architecture to

record various pieces of information regarding the state of the program being executed by the

processor and the state of the processor. This information is recorded by setting or clearing

specific bits in the register.

The top four bits (bits 31, 30, 29, and 28) are the condition code (cc) bits and are of most interest

to us. Condition code bits are sometimes referred to as "flags". The lowest 8 bits (bit 7 through to

bit 0) store information about the processor's own state. The remaining bits (i.e. bit 27 to bit 8)

are currently unused in most ARM processors.

The N bit is the "negative flag" and indicates that a value is negative.

The Z bit is the "zero flag" and is set when an appropriate instruction produces a zero result.

The C bit is the "carry flag" but it can also be used to indicate "borrows" (from subtraction

operations) and "extends" (from shift instructions (LINK)).

The V bit is the "overflow flag" which is set if an instruction produces a result that overflows and

hence may go beyond the range of numbers that can be represented in 2's complement signed

format.

For completeness, the other state bits are:

The I and F bits which determine whether interrupts (such as requests for input/output) are

enabled or disabled.

The T bit which indicates whether the processor is in "Thumb" mode, where the processor can

execute a subset of the assembly language as 16-bit compact instructions. As Thumb code packs

more instructions into the same amount of memory, it is an effective solution to applications

where physical memory is at a premium.

The M4 to M0 bits are the mode bits. Application programs normally run in user mode (where

the mode bits are 10000). Whenever an interrupt or similar event occurs, the processor switches

into one of the alternative modes allowing the software handler greater privileges with regard to

memory manipulation.

M[4:0] Mode Accessible registers

10000 User PC, R14 to R0, CPSR

10001 FIQ PC, R14_fiq to R8_fiq, R7 to R0, CPSR, SPSR_fiq

10010 IRQ PC, R14_irq, R13_irq, R12 to R0, CPSR, SPSR_irq

10011 Supervisor PC, R14_svc, R13_svc, R12 to R0, CPSR, SPSR_svc

10111 Abort PC, R14_abt, R13_abt, R12 to R0, CPSR, SPSR_abt

11011 Undefined PC, R14_und, R13_und, R12 to R0, CPSR, SPSR_und

11111 System PC, R14 to R0, CPSR

The instruction pipeline

The ARM uses a pipeline to increase the speed of the flow of instructions to the processor. This

allows several operations to take place simultaneously, and the processing, and memory systems

to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages:

 Fetch

 Decode

 Execute.

The three-stage pipeline is shown in

The instruction pipeline

During normal operation, while one instruction is being executed, its successor is being decoded,

and a third instruction is being fetched from memory. The program counter points to the

instruction being fetched rather than to the instruction being executed. This is important because

it means that the Program Counter (PC) value used in an executing instruction is always two

instructions ahead of the address.

The pipeline design for each ARM family differs. For example, The ARM9 core increases the

pipeline length to five stages, as shown in Figure 2.9. The ARM9 adds a memory and writeback

stage, which allows the ARM9 to process on average 1.1 Dhrystone MIPS per MHz—an

increase in instruction throughput by around 13% compared with an ARM7. The maximum core

frequency attainable using an ARM9 is also higher.

The ARM10 increases the pipeline length still further by adding a sixth stage, as shown in Figure

2.10. The ARM10 can process on average 1.3 Dhrystone MIPS per MHz, about 34% more

throughput than an ARM7 processor core, but again at a higher latency cost.

Even though the ARM9 and ARM10 pipelines are different, they still use the same pipeline

executing characteristics as an ARM7. Code written for the ARM7 will execute on an ARM9 or

ARM10.

Interrupts and the Vector Table.

When an exception or interrupt occurs, the processor sets the pc to a specific memory address.

The address is within a special address range called the vector table. The entries in the vector

table are instructions that branch to specific routines designed to handle a particular exception or

interrupt.

The memory map address 0x00000000 is reserved for the vector table, a set of 32-bit words. On

some processors the vector table can be optionally located at a higher address in memory

(starting at the offset 0xffff0000). Operating systems such as Linux and Microsoft’s embedded

products can take advantage of this feature.

When an exception or interrupt occurs, the processor suspends normal execution and starts

loading instructions from the exception vector table (see Table 2.6). Each vector table entry

contains a form of branch instruction pointing to the start of a specific routine:

Reset vector is the location of the first instruction executed by the processor when power is

applied. This instruction branches to the initialization code.

Undefined instruction vector is used when the processor cannot decode an instruction.

Software interrupt vector is called when you execute a SWI instruction. The SWI instruction is

frequently used as the mechanism to invoke an operating system routine.

Prefetch abort vector occurs when the processor attempts to fetch an instruction from an address

without the correct access permissions. The actual abort occurs in the decode stage.

Data abort vector is similar to a prefetch abort but is raised when an instruction attempts to

access data memory without the correct access permissions.

Interrupt request vector is used by external hardware to interrupt the normal execution flow of

the processor. It can only be raised if IRQs are not masked in the cpsr.

The vector table.

Exception/interrupt Shorthand Address High address

Reset RESET 0x00000000 0xffff0000
Undefined instruction UNDEF 0x00000004 0xffff0004
Software interrupt SWI 0x00000008 0xffff0008
Prefetch abort PABT 0x0000000c 0xffff000c
Data abort DABT 0x00000010 0xffff0010
Reserved — 0x00000014 0xffff0014
Interrupt request IRQ 0x00000018 0xffff0018
Fast interrupt request FIQ 0x0000001c 0xffff001c

Architecture Revision

Every ARM processor implementation executes a specific instruction set architecture (ISA),

although an ISA revision may have more than one processor implementation.

The ISA has evolved to keep up with the demands of the embedded market. This evolution has

been carefully managed by ARM, so that code written to execute on an earlier architecture

revision will also execute on a later revision of the architecture.

Before we go on to explain the evolution of the architecture, we must introduce the ARM

processor nomenclature. The nomenclature identifies individual processors and provides basic

information about the feature set.

Nomenclature

ARM uses the nomenclature shown in below Figure to describe the processor implemen- tations.

The letters and numbers after the word “ARM” indicate the features a processor

ARM{x}{y}{z}{T}{D}{M}{I}{E}{J}{F}{-S}

x—family y—memory management/protection unit

z—cache T—Thumb 16-bit decoder

D—JTAG debug M—fast multiplier

I—EmbeddedICE macrocell E—enhanced instructions (assumes TDMI)

J—Jazelle F—vector floating-point unit

S—synthesizible version

may have. In the future the number and letter combinations may change as more features are

added. Note the nomenclature does not include the architecture revision information.

There are a few additional points to make about the ARM nomenclature:

■ All ARM cores after the ARM7TDMI include the TDMI features even though they may

not include those letters after the “ARM” label.

■ The processor family is a group of processor implementations that share the same

hardware characteristics. For example, the ARM7TDMI, ARM740T, and ARM720T all share

the same family characteristics and belong to the ARM7 family.

■ JTAG is described by IEEE 1149.1 Standard Test Access Port and boundary scan archi-

tecture. It is a serial protocol used by ARM to send and receive debug information between the

processor core and test equipment.

■ EmbeddedICE macrocell is the debug hardware built into the processor that allows

breakpoints and watchpoints to be set.

■ Synthesizable means that the processor core is supplied as source code that can be

compiled into a form easily used by EDA tools.

Architecture Evolution

The architecture has continued to evolve since the first ARM processor implementation was

introduced in 1985. Significant architecture enhancements from the original architecture version

1 to the current version 6 architecture. One of the most significant changes to the ISA was the

introduction of the Thumb instruction set in ARMv4T (the ARM7TDMI processor).

The various parts of the program status register and the availabil- ity of certain features on

particular instruction architectures. “All” refers to the ARMv4 architecture and above.

ARM PROCESSOR FAMILIES
ARM has designed a number of processors that are grouped into different families according to

the core they use. The families are based on the ARM7, ARM9, ARM10, and ARM11 cores. The

postfix numbers 7, 9, 10, and 11 indicate different core designs. The ascending number equates

to an increase in performance and sophistication. ARM8 was developed but was soon

superseded.

Table 2.9 shows a rough comparison of attributes between the ARM7, ARM9, ARM10, and

ARM11 cores. The numbers quoted can vary greatly and are directly dependent upon the type

and geometry of the manufacturing process, which has a direct effect on the frequency (MHz)

and power consumption (watts).

Within each ARM family, there are a number of variations of memory management, cache, and

TCM processor extensions. ARM continues to expand both the number of families available and

the different variations within each family.

You can find other processors that execute the ARM ISA such as StrongARM and XScale. These

processors are unique to a particular semiconductor company, in this case Intel.

Table 2.10 summarizes the different features of the various processors. The next subsections

describe the ARM families in more detail, starting with the ARM7 family.

ARM7 Family

The ARM7 core has a Von Neumann–style architecture, where both data and instructions use the

same bus. The core has a three-stage pipeline and executes the architecture ARMv4T instruction

set.

The ARM7TDMI was the first of a new range of processors introduced in 1995 by ARM. It is

currently a very popular core and is used in many 32-bit embedded processors. It provides a very

good performance-to-power ratio. The ARM7TDMI processor core has been licensed by many

of the top semiconductor companies around the world and is the first core to include the Thumb

instruction set, a fast multiply instruction, and the EmbeddedICE debug technology.

One significant variation in the ARM7 family is the ARM7TDMI-S. The ARM7TDMI-S has the

same operating characteristics as a standard ARM7TDMI but is also synthesizable. ARM720T is

the most flexible member of the ARM7 family because it includes an MMU. The presence of the

MMU means the ARM720T is capable of handling the Linux and Microsoft embedded platform

operating systems. The processor also includes a unified 8K cache. The vector table can be

relocated to a higher address by setting a coprocessor 15 register.

Another variation is the ARM7EJ-S processor, also synthesizable. ARM7EJ-S is quite different

since it includes a five-stage pipeline and executes ARMv5TEJ instructions. This version of the

ARM7 is the only one that provides both Java acceleration and the enhanced instructions but

without any memory protection.

ARM9 FAMILY
The ARM9 family was announced in 1997. Because of its five-stage pipeline, the ARM9

processor can run at higher clock frequencies than the ARM7 family. The extra stages improve

the overall performance of the processor. The memory system has been redesigned to follow the

Harvard architecture, which separates the data D and instruction I buses.

+
+

+

+

+

The first processor in the ARM9 family was the ARM920T, which includes a separate D I cache

and an MMU. This processor can be used by operating systems requiring virtual memory

support. ARM922T is a variation on the ARM920T but with half the D I cache size.

The ARM940T includes a smaller D I cache and an MPU. The ARM940T is designed for

applications that do not require a platform operating system. Both ARM920T and ARM940T

execute the architecture v4T instructions.

The next processors in the ARM9 family were based on the ARM9E-S core. This core is a

synthesizable version of the ARM9 core with the E extensions. There are two variations: the

ARM946E-S and the ARM966E-S. Both execute architecture v5TE instructions. They also

support the optional embedded trace macrocell (ETM), which allows a developer to trace

instruction and data execution in real time on the processor. This is important when debugging

applications with time-critical segments.

The ARM946E-S includes TCM, cache, and an MPU. The sizes of the TCM and caches are

configurable. This processor is designed for use in embedded control applications that require

deterministic real-time response. In contrast, the ARM966E does not have the MPU and cache

extensions but does have configurable TCMs.

The latest core in the ARM9 product line is the ARM926EJ-S synthesizable processor core,

announced in 2000. It is designed for use in small portable Java-enabled devices such as 3G

phones and personal digital assistants (PDAs). The ARM926EJ-S is the first ARM processor

core to include the Jazelle technology, which accelerates Java bytecode execution. It features an

MMU, configurable TCMs, and D I caches with zero or nonzero wait state memories.

ARM10 Family
The ARM10, announced in 1999, was designed for performance. It extends the ARM9 pipeline

to six stages. It also supports an optional vector floating-point (VFP) unit, which adds a seventh

stage to the ARM10 pipeline. The VFP significantly increases floating-point performance and is

compliant with the IEEE 754.1985 floating-point standard.

The ARM1020E is the first processor to use an ARM10E core. Like the ARM9E, it includes the

enhanced E instructions. It has separate 32K D I caches, optional vector floating-point unit, and

an MMU. The ARM1020E also has a dual 64-bit bus interface for increased performance.

ARM1026EJ-S is very similar to the ARM926EJ-S but with both MPU and MMU. This

processor has the performance of the ARM10 with the flexibility of an ARM926EJ-S.

ARM11 Family
The ARM1136J-S, announced in 2003, was designed for high performance and power- efficient

applications. ARM1136J-S was the first processor implementation to execute architecture

ARMv6 instructions. It incorporates an eight-stage pipeline with separate load- store and

+

arithmetic pipelines. Included in the ARMv6 instructions are single instruction multiple data

(SIMD) extensions for media processing, specifically designed to increase video processing

performance.

The ARM1136JF-S is an ARM1136J-S with the addition of the vector floating-point unit for fast

floating-point operations.

Specialized Processors
StrongARM was originally co-developed by Digital Semiconductor and is now exclusively

licensed by Intel Corporation. It is has been popular for PDAs and applications that require

performance with low power consumption. It is a Harvard architecture with separate D I caches.

StrongARM was the first high-performance ARM processor to include a five-stage pipeline, but

it does not support the Thumb instruction set.

Intel’s XScale is a follow-on product to the StrongARM and offers dramatic increases in

performance. At the time of writing, XScale was quoted as being able to run up to 1 GHz.

XScale executes architecture v5TE instructions. It is a Harvard architecture and is similar to the

StrongARM, as it also includes an MMU.

SC100 is at the other end of the performance spectrum. It is designed specifically for low-power

security applications. The SC100 is the first SecurCore and is based on an ARM7TDMI core

with an MPU. This core is small and has low voltage and current requirements, which makes it

attractive for smart card applications.

UNIT-II

ARM Programming Model – I

ARM instructions process data held in registers and only access memory with load and store

instructions. ARM instructions commonly take two or three operands. For instance the ADD

instruction below adds the two values stored in registers r1 and r2 (the source registers). It writes

the result to register r3 (the destination register).

Instruction

Syntax

Destination

register

(Rd)

Source

register 1 (Rn)

Source

register 2 (Rm)

ADD r3, r1, r2 r3 r1 r2

In the following sections we examine the function and syntax of the ARM instructions by

instruction class—data processing instructions, branch instructions,

load-store instructions, software interrupt instruction, and program status register instructions.

Data Processing Instructions

The data processing instructions manipulate data within registers. They are move instruc- tions,

arithmetic instructions, logical instructions, comparison instructions, and multiply instructions.

Most data processing instructions can process one of their operands using the barrel shifter.

If you use the S suffix on a data processing instruction, then it updates the flags in the cpsr. Move

and logical operations update the carry flag C, negative flag N, and zero flag Z. The carry flag is

set from the result of the barrel shift as the last bit shifted out. The N flag is set to bit 31 of the

result. The Z flag is set if the result is zero.

Move Instructions

Move is the simplest ARM instruction. It copies N into a destination register Rd, where N is a

register or immediate value. This instruction is useful for setting initial values and transferring

data between registers.

Syntax: <instruction>{<cond>}{S} Rd, N

MOV Move a 32-bit value into a register Rd = N

MVN
move the NOT of the 32-bit value into a

register
Rd = - N

Gives a full description of the values allowed for the second operand N for all data processing

instructions. Usually it is a register Rm or a constant preceded by #.

Barrel Shifter

MOV instruction where N is a simple register. But N can be more than just a register or

immediate value; it can also be a register Rm that has been preprocessed by the barrel shifter

prior to being used by a data processing instruction.

Data processing instructions are processed within the arithmetic logic unit (ALU). A unique and

powerful feature of the ARM processor is the ability to shift the 32-bit binary pattern in one of

the source registers left or right by a specific number of positions before it enters the ALU. This

shift increases the power and flexibility of many data processing operations.

There are data processing instructions that do not use the barrel shift, for example, the MUL

(multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add) instructions.

Pre-processing or shift occurs within the cycle time of the instruction. This is particularly useful

for loading constants into a register and achieving fast multiplies or division by a power of 2.

Arithmetic Instructions

The arithmetic instructions implement addition and subtraction of 32-bit signed and unsigned

values.

Using the Barrel Shifter with Arithmetic Instructions

The wide range of second operand shifts available on arithmetic and logical instructions is a very

powerful feature of the ARM instruction set. illustrates the use of the inline barrel shifter with an

arithmetic instruction. The instruction multiplies the value stored in register r1 by three.

BRANCH INSTRUCTIONS

A branch instruction changes the flow of execution or is used to call a routine. This type of

instruction allows programs to have subroutines, if-then-else structures, and loops.

The change of execution flow forces the program counter pc to point to a new address. The

ARMv5E instruction set includes four different branch instructions.

Syntax: B{<cond>} label

BL{<cond>} label

BX{<cond>} Rm

BLX{<cond>} label | Rm

B branch pc = label

BL branch with link

pc = label

lr = address of the next instruction after the BL

BX branch exchange pc = Rm & 0xfffffffe, T = Rm &1

BLX
branch exchange

with link

pc = label, T =1

pc = Rm & 0xfffffffe, T = Rm &1

lr = address of the next instruction after the

BLX

The address label is stored in the instruction as a signed pc-relative offset and must be

within approximately 32 MB of the branch instruction. T refers to the Thumb bit in the cpsr.

When instructions set T, the ARM switches to Thumb state.

Example:

This example shows a forward and backward branch. Because these loops are address

specific, we do not include the pre- and post-conditions. The forward branch skips three

instructions. The backward branch creates an infinite loop.

Branches are used to change execution flow. Most assemblers hide the details of a branch

instruction encoding by using labels. In this example, forward and backward are the labels. The

branch labels are placed at the beginning of the line and are used to mark an address that can be

used later by the assembler to calculate the branch offset.

LOAD-STORE INSTRUCTIONS

Load-store instructions transfer data between memory and processor registers. There are

three types of load-store instructions: single-register transfer, multiple-register transfer, and

swap.

SINGLE-REGISTER TRANSFER

These instructions are used for moving a single data item in and out of a register. The

datatypes supported are signed and unsigned words (32-bit), halfwords (16-bit), and bytes. Here

are the various load-store single-register transfer instructions.

SINGLE-REGISTER LOAD-STORE ADDRESSING MODES
The ARM instruction set provides different modes for addressing memory. These modes

incorporate one of the indexing methods: preindex with writeback, preindex, and postindex

MULTIPLE-REGISTER TRANSFER
Load-store multiple instructions can transfer multiple registers between memory and the

processor in a single instruction. The transfer occurs from a base address register Rn pointing

into memory. Multiple-register transfer instructions are more efficient from single-register

transfers for moving blocks of data around memory and saving and restoring context and stacks.

CONDITIONAL EXECUTION

Most ARM instructions are conditionally executed—you can specify that the instruction

only executes if the condition code flags pass a given condition or test. By using conditional

execution instructions you can increase performance and code density.

The condition field is a two-letter mnemonic appended to the instruction mnemonic.

The default mnemonic is AL, or always execute.

Conditional execution reduces the number of branches, which also reduces the number of

pipeline flushes and thus improves the performance of the executed code. Conditional execution

depends upon two components: the condition field and condition flags. The condition field is

located in the instruction, and the condition flags are located in the cpsr.

Unit-III

ARM Programming Model – II

Thumb Instruction Set

Thumb encodes a subset of the 32-bit ARM instructions into a 16-bit instruction set

space. Since Thumb has higher performance than ARM on a processor with a 16-bit data bus, but

lower performance than ARM on a 32-bit data bus, use Thumb for memory-constrained systems.

Thumb has higher code density—the space taken up in memory by an executable

program—than ARM. For memory-constrained embedded systems, for example, mobile phones

and PDAs, code density is very important. Cost pressures also limit memory size, width, and

speed.

On average, a Thumb implementation of the same code takes up around 30% less

memory than the equivalent ARM implementation. As an example, the same divide code routine

implemented in ARM and Thumb assembly code. Even though the Thumb implementation uses

more instructions, the overall memory footprint is reduced. Code density was the main driving

force for the Thumb instruction set. Because it was also designed as a compiler target, rather than

for hand-written assembly code, we recommend that you write Thumb-targeted code in a high-

level language like C or C++.

Each Thumb instruction is related to a 32-bit ARM instruction. A simple Thumb ADD

instruction being decoded into an equivalent ARM ADD instruction. Only the branch relative

instruction can be conditionally executed. The limited space available in 16 bits causes the barrel

shift operations ASR, LSL, LSR, and ROR to be separate instructions in the Thumb ISA.

Thumb instruction set.

THUMB REGISTER USAGE

In Thumb state, you do not have direct access to all registers. Only the low registers r0 to

r7 are fully accessible, as shown in below Table 4.2. The higher registers r8 to r12 are only

accessible with MOV, ADD, or CMP instructions. CMP and all the data processing instructions

that operate on low registers update the condition flags in the cpsr.

−
−

You may have noticed from the Thumb instruction set list and from the Thumb register

usage table that there is no direct access to the cpsr or spsr. In other words, there are no MSR-

and MRS-equivalent Thumb instructions.

To alter the cpsr or spsr, you must switch into ARM state to use MSR and MRS.

Similarly, there are no coprocessor instructions in Thumb state. You need to be in ARM state to

access the coprocessor for configuring cache and memory management.

OTHER BRANCH INSTRUCTIONS
There are two variations of the standard branch instruction, or B. The first is similar to the

ARM version and is conditionally executed; the branch range is limited to a signed 8-bit

immediate, or 256 to +254 bytes. The second version removes the conditional part of the

instruction and expands the effective branch range to a signed 11-bit immediate, or 2048 to

+2046 bytes.

The conditional branch instruction is the only conditionally executed instruction in

Thumb state.

Syntax: B<cond> label

 B label

 BL label

UNIT –IV

ARM Programming

BASIC C DATA TYPES

There are also differences between the addressing modes available when loading and

storing data of each type.

ARM processors have 32-bit registers and 32-bit data processing operations. The ARM

architecture is a RISC load/store architecture. In other words you must load values from memory

into registers before acting on them. There are no arithmetic or logical instructions that manipulate

values in memory directly.

Early versions of the ARM architecture (ARMv1 to ARMv3) provided hardware support

for loading and storing unsigned 8-bit and unsigned or signed 32-bit values.

These architectures were used on processors prior to the ARM7TDMI. The load/store

instruction classes available by ARM architecture.

In loads that act on 8- or 16-bit values extend the value to 32 bits before writing to an ARM

register. Unsigned values are zero-extended, and signed values sign-extended. This means that the

cast of a loaded value to an int type does not cost extra instructions. Similarly, a store of an 8- or

16-bit value selects the lowest 8 or 16 bits of the register. The cast of an int to smaller type does

not cost extra instructions on a store.

The ARMv4 architecture and above support signed 8-bit and 16-bit loads and stores

directly, through new instructions. Since these instructions are a later addition, they do not support

as many addressing modes as the pre-ARMv4 instructions.

≥

Finally, ARMv5 adds instruction support for 64-bit load and stores. This is available in

ARM9E and later cores.

Prior to ARMv4, ARM processors were not good at handling signed 8-bit or any 16-bit

values. Therefore ARM C compilers define char to be an unsigned 8-bit value, rather than a signed

8-bit value as is typical in many other compilers.

Compilers armcc and gcc use the datatype mappings in Table 5.2 for an ARM target. The

exceptional case for type char is worth noting as it can cause problems when you are porting code

from another processor architecture. A common example is using a char type variable i as a loop

counter, with loop continuation condition i 0. As i is unsigned for the ARM compilers, the loop

will never terminate. Fortunately armcc produces a warning in this situation: unsigned comparison

with 0. Compilers also provide an override switch to make char signed. For example, the command

line option -fsigned-char will make char signed on gcc. The command line option -zc will have the

same effect with armcc.

FUNCTION ARGUMENT TYPES

 local variables from types char or short to type int increases performance and

reduces code size. The same holds for function arguments. Consider the following simple function,

which adds two 16-bit values, halving the second, and returns a 16-bit sum:

short add_v1(short a, short b)

{

return a + (b >> 1);

}

− +

This function is a little artificial, but it is a useful test case to illustrate the problems faced

by the compiler. The input values a, b, and the return value will be passed in 32-bit ARM registers.

Should the compiler assume that these 32-bit values are in the range of a short type, that is, 32,768

to 32,767? Or should the compiler force values to be in this range by sign-extending the lowest 16

bits to fill the 32-bit register? The compiler must make compatible decisions for the function caller

and callee. Either the caller or callee must perform the cast to a short type.

We say that function arguments are passed wide if they are not reduced to the range of the

type and narrow if they are. You can tell which decision the compiler has made by looking at the

assembly output for add_v1. If the compiler passes arguments wide, then the callee must reduce

function arguments to the correct range. If the compiler passes arguments narrow, then the caller

must reduce the range. If the compiler returns values wide, then the caller must reduce the return

value to the correct range. If the compiler returns values narrow, then the callee must reduce the

range before returning the value.

For armcc in ADS, function arguments are passed narrow and values returned narrow. In

other words, the caller casts argument values and the callee casts return values. The compiler uses

the ANSI prototype of the function to determine the datatypes of the function arguments.

The armcc output for add_v1 shows that the compiler casts the return value to a short type,

but does not cast the input values. It assumes that the caller has already ensured that the 32-bit

values r0 and r1 are in the range of the short type. This shows narrow passing of arguments and

return value.

The gcc compiler we used is more cautious and makes no assumptions about the range of

argument value. This version of the compiler reduces the input arguments to the range

C LOOPING STRUCTURES
This section looks at the most efficient ways to code for and while loops on the ARM. We

start by looking at loops with a fixed number of iterations and then move on to loops with a

variable number of iterations. Finally we look at loop unrolling.

LOOPS WITH A FIXED NUMBER OF ITERATIONS

What is the most efficient way to write a for loop on the ARM? Let’s return to our

checksum example and look at the looping structure.

The first point to note about the procedure call standard is the four-register rule. Functions

with four or fewer arguments are far more efficient to call than functions with five or more

arguments. For functions with four or fewer arguments, the compiler can pass all the arguments in

registers. For functions with more arguments, both the caller and callee must access the stack for

some arguments. Note that for C++ the first argument to an object method is the this pointer. This

argument is implicit and additional to the explicit arguments.

Function Call:

The ARM Procedure Call Standard (APCS) defines how to pass function arguments and

return values in ARM registers. The more recent ARM-Thumb Procedure Call Standard (ATPCS)

covers ARM and Thumb interworking as well.

The first four integer arguments are passed in the first four ARM registers: r0, r1, r2, and

r3. Subsequent integer arguments are placed on the full descending stack, ascending in memory

Function return integer values are passed in r0.

This description covers only integer or pointer arguments. Two-word arguments such as

long long or double are passed in a pair of consecutive argument registers and returned in r0, r1.

The compiler may pass structures in registers or by reference according to command line compiler

options.

The first point to note about the procedure call standard is the four-register rule. Functions

with four or fewer arguments are far more efficient to call than functions with five or more

arguments. For functions with four or fewer arguments, the compiler can pass all the arguments in

registers. For functions with more arguments, both the caller and callee must access the stack for

some arguments. Note that for C++ the first argument to an object method is the this pointer. This

argument is implicit and additional to the explicit arguments.

If your C function needs more than four arguments, or your C++ method more than three

explicit arguments, then it is almost always more efficient to use structures. Group related

arguments into structures, and pass a structure pointer rather than mul- tiple arguments. Which

arguments are related will depend on the structure of your software.

Pointer Aliasing

Two pointers are said to alias when they point to the same address. If you write to one

pointer, it will affect the value you read from the other pointer. In a function, the compiler often

doesn’t know which pointers can alias and which pointers can’t. The compiler must be very

pessimistic and assume that any write to a pointer may affect the value read from any other

pointer, which can significantly reduce code efficiency.

Let’s start with a very simple example. The following function increments two timer values

by a step amount:

STRUCTURE ARRANGEMENT
The way you lay out a frequently used structure can have a significant impact on its perfor-

mance and code density. There are two issues concerning structures on the ARM: alignment of the

structure entries and the overall size of the structure.

For architectures up to and including ARMv5TE, load and store instructions are only

guaranteed to load and store values with address aligned to the size of the access width. Table 5.4

summarizes these restrictions.

For this reason, ARM compilers will automatically align the start address of a structure to a

multiple of the largest access width used within the structure (usually four or eight bytes) and align

entries within structures to their access width by inserting padding.

For example, consider the structure

struct {

char a;

int b;

char c;

short d;

}

For a little-endian memory system the compiler will lay this out adding padding to ensure

that the next object is aligned to the size of that object:

Floating Point

The majority of ARM processor implementations do not provide hardware floating-point

support, which saves on power and area when using ARM in a price-sensitive, embedded

application. With the exceptions of the Floating Point Accelerator (FPA) used on the ARM7500FE

and the Vector Floating Point accelerator (VFP) hardware, the C compiler must provide support

for floating point in software.

In practice, this means that the C compiler converts every floating-point operation into a

subroutine call. The C library contains subroutines to simulate floating-point behavior using

integer arithmetic. This code is written in highly optimized assembly. Even so, floating-point

algorithms will execute far more slowly than corresponding integer algorithms.

If you need fast execution and fractional values, you should use fixed-point or block-

floating algorithms. Fractional values are most often used when processing digital signals such as

audio and video. This is a large and important area of programming, For best performance you

need to code the algorithms in assembly

Instruction Scheduling

The time taken to execute instructions depends on the implementation pipeline. For this

chapter, we assume ARM9TDMI pipeline timings.

The following rules summarize the cycle timings for common instruction classes on the

ARM9TDMI.

Instructions that are conditional on the value of the ARM condition codes in the cpsr take one

cycle if the condition is not met. If the condition is met, then the following rules apply:

■ ALU operations such as addition, subtraction, and logical operations take one cycle. This

includes a shift by an immediate value. If you use a register-specified shift, then add one cycle. If

the instruction writes to the pc, then add two cycles.

■ Load instructions that load N 32-bit words of memory such as LDR and LDM take N

cycles to issue, but the result of the last word loaded is not available on the following cycle. The

updated load address is available on the next cycle. This assumes zero-wait-state memory for an

uncached system, or a cache hit for a cached system. An LDM of a single value is exceptional,

taking two cycles. If the instruction loads pc, then add two cycles.

■ Load instructions that load 16-bit or 8-bit data such as LDRB, LDRSB, LDRH, and

LDRSH take one cycle to issue. The load result is not available on the following two cycles. The

updated load address is available on the next cycle. This assumes zero-wait-state memory for an

uncached system, or a cache hit for a cached system.

■ Branch instructions take three cycles.

■ Store instructions that store N values take N cycles. This assumes zero-wait-state memory

for an uncached system, or a cache hit or a write buffer with N free entries for a cached system. An

STM of a single value is exceptional, taking two cycles.

− −

■ Multiply instructions take a varying number of cycles depending on the value of the second

operand in the product (see Table D.6 in Section D.3).

To understand how to schedule code efficiently on the ARM, we need to understand the ARM

pipeline and dependencies. The ARM9TDMI processor performs five operations in parallel:

■ Fetch: Fetch from memory the instruction at address pc. The instruction is loaded into the

core and then processes down the core pipeline.

■ Decode: Decode the instruction that was fetched in the previous cycle. The processor also

reads the input operands from the register bank if they are not available via one of the forwarding

paths.

■ ALU: Executes the instruction that was decoded in the previous cycle. Note this instruc-

tion was originally fetched from address pc 8 (ARM state) or pc 4 (Thumb state). Normally this

involves calculating the answer for a data processing operation, or the address for a load, store, or

branch operation. Some instructions may spend several cycles in this stage. For example, multiply

and register-controlled shift operations take several ALU cycles.

Conditional Execution
 The processor core can conditionally execute most ARM instructions. This conditional

execution is based on one of 15 condition codes. If you don’t specify a condition, the

assembler defaults to the execute always condition (AL). The other 14 conditions split into

seven pairs of complements. The conditions depend on the four condition code flags N, Z, C, V

stored in the cpsr register. See Table A.2 in Appendix A for the list of possible ARM conditions.

By default, ARM instructions do not update the N, Z, C, V flags in the ARM cpsr. For most

instructions, to update these flags you append an S suffix to the instruction mnemonic. Exceptions

to this are comparison instructions that do not write to a destination register. Their sole purpose is

to update the flags and so they don’t require the S suffix.

By combining conditional execution and conditional setting of the flags, you can imple-

ment simple if statements without any need for branches. This improves efficiency since branches

can take many cycles and also reduces code size.

UNIT-5

Memory Management

BASIC OPERATION of A CACHE CONTROLLER

The cache controller is hardware that copies code or data from main memory to cache memory

automatically. It performs this task automatically to conceal cache operation from the software it

supports. Thus, the same application software can run unaltered on systems with and without a

cache.

The cache controller intercepts read and write memory requests before passing them on to the

memory controller. It processes a request by dividing the address of the request into three fields,

the tag field, the set index field, and the data index field. The three bit fields are shown in Figure

12.4.

First, the controller uses the set index portion of the address to locate the cache line within the

cache memory that might hold the requested code or data. This cache line contains the cache-tag

and status bits, which the controller uses to determine the actual data stored there.

The controller then checks the valid bit to determine if the cache line is active, and compares the

cache-tag to the tag field of the requested address. If both the status check and comparison

succeed, it is a cache hit. If either the status check or comparison fails, it is a cache miss.

On a cache miss, the controller copies an entire cache line from main memory to cache memory

and provides the requested code or data to the processor. The copying of a cache line from main

memory to cache memory is known as a cache line fill.

On a cache hit, the controller supplies the code or data directly from cache memory to the

processor. To do this it moves to the next step, which is to use the data index field of the address

request to select the actual code or data in the cache line and provide it to the processor.

Changing the memory configuration of a system may require cleaning or flushing a cache. The

need to clean or flush a cache results directly from actions like changing the access permission,

cache, and buffer policy, or remapping virtual addresses.

The cache may also need cleaning or flushing before the execution of self-modifying code in a

split cache. Self-modifying code includes a simple copy of code from one location to another.

The need to clean or flush arises from two possible conditions: First, the self- modifying code

may be held in the D-cache and therefore be unavailable to load from main memory as an

instruction. Second, existing instructions in the I-cache may mask new instructions written to

main memory.

If a cache is using a writeback policy and self-modifying code is written to main memory, the

first step is to write the instructions as a block of data to a location in main memory. At a later

time, the program will branch to this memory and begin executing from that area of memory as

an instruction stream. During the first write of code to main memory as data, it may be written to

cache memory instead; this occurs in an ARM cache if valid cache lines exist in cache memory

representing the location where the self-modifying code is written. The cache lines are copied to

the D-cache and not to main memory. If this is the case, then when the program branches to the

location where the self-modifying code should be, it will execute old instructions still present

because the self-modifying code is still in the D-cache. To prevent this, clean the cache, which

forces the instructions stored as data into main memory, where they can be read as an instruction

stream.

If the D-cache has been cleaned, new instructions are present in main memory. However, the I -

cache may have valid cache lines stored for the addresses where the new data (code) was written.

Consequently, a fetch of the instruction at the address of the copied code would retrieve the old

code from the I-cache and not the new code from main memory. Flush the I-cache to prevent this

from happening.

DETAILS of THE ARM MMU
The ARM MMU performs several tasks: It translates virtual addresses into physical addresses, it

controls memory access permission, and it determines the individual behav- ior of the cache and

write buffer for each page in memory. When the MMU is disabled, all virtual addresses map

one-to-one to the same physical address. If the MMU is unable to translate an address, it

generates an abort exception. The MMU will only abort on translation, permission, and domain

faults.

The main software configuration and control components in the MMU are

 Page tables

 The Translation Lookaside Buffer (TLB)

 Domains and access permission

 Caches and write buffer

 The CP15:c1 control register

 The Fast Context Switch Extension

Memory Management Unit (MMU)

 When creating a multitasking embedded system, it makes sense to have an easy way to

write, load, and run independent application tasks. Many of today’s embedded systems use an

operating system instead of a custom proprietary control system to simplify this process. More

advanced operating systems use a hardware-based memory management unit (MMU).

One of the key services provided by an MMU is the ability to manage tasks as indepen-

dent programs running in their own private memory space. A task written to run under the

control of an operating system with an MMU does not need to know the memory requirements of

unrelated tasks. This simplifies the design requirements of individual tasks running under the

control of an operating system.

The processor cores with memory protection units. These cores have a single addressable

physical memory space. The addresses generated by the processor core while running a task are

used directly to access main memory, which makes it impossible for two programs to reside in

main memory at the same time if they are compiled using addresses that overlap. This makes

running several tasks in an embedded system difficult because each task must run in a distinct

address block in main memory.

The MMU simplifies the programming of application tasks because it provides the

resources needed to enable virtual memory—an additional memory space that is indepen- dent of

the physical memory attached to the system. The MMU acts as a translator, which converts the

addresses of programs and data that are compiled to run in virtual memory to the actual physical

addresses where the programs are stored in physical main memory. This translation process

allows programs to run with the same virtual addresses while being held in different locations in

physical memory.

This dual view of memory results in two distinct address types: virtual addresses and physical

addresses. Virtual addresses are assigned by the compiler and linker when locating a program in

memory. Physical addresses are used to access the actual hardware components of main memory

where the programs are physically located.

ARM provides several processor cores with integral MMU hardware that efficiently support

multitasking environments using virtual memory. The goal of this chapter is to learn the basics of

ARM memory management units and some basic concepts that underlie the use of virtual

memory.

Virtual Memory Works
In an MMU, tasks can run even if they are compiled and linked to run in regions with

overlapping addresses in main memory. The support for virtual memory in the MMU enables the

construction of an embedded system that has multiple virtual memory maps and a single physical

memory map. Each task is provided its own virtual memory map for the purpose of compiling

and linking the code and data, which make up the task. A kernel layer then manages the

placement of the multiple tasks in physical memory so they have a distinct location in physical

memory that is different from the virtual location it is designed to run in.

To permit tasks to have their own virtual memory map, the MMU hardware performs address

relocation, translating the memory address output by the processor core before it reaches main

memory. The easiest way to understand the translation process is to imagine a relocation register

located in the MMU between the core and main memory.

When the processor core generates a virtual address, the MMU takes the upper bits of the

virtual address and replaces them with the contents of the relocation register to create a physical

address, shown in above Figure.

The lower portion of the virtual address is an offset that translates to a specific address in

physical memory. The range of addresses that can be translated using this method is limited by

the maximum size of this offset portion of the virtual address.

The above Figure shows an example of a task compiled to run at a starting address of

0x4000000 in virtual memory. The relocation register translates the virtual addresses of Task 1

to physical addresses starting at 0x8000000.

A second task compiled to run at the same virtual address, in this case 0x400000, can be

placed in physical memory at any other multiple of 0x10000 (64 KB) and mapped to 0x400000

simply by changing the value in the relocation register.

A single relocation register can only translate a single area of memory, which is set by the

number of bits in the offset portion of the virtual address. This area of virtual memory is known

as a page. The area of physical memory pointed to by the translation process is known as a page

frame.

The relationship between pages, the MMU, and page frames shows in below figure. The

ARM MMU hardware has multiple relocation registers supporting the translation of virtual

memory to physical memory. The MMU needs many relocation registers to effectively support

virtual memory because the system must translate many pages to many page frames.

Regions Using Pages

virtual memory has a corresponding entry in a page table, a block of virtual memory

pages map to a set of sequential entries in a page table. Thus, a region can be defined as a

sequential set of page table entries. The location and size of a region can be held in a software

data structure while the actual translation data and attribute information is held in the page tables.

An example of a single task that has three regions: one for text, one for data, and a third

to support the task stack. Each region in virtual memory is mapped to different areas in physical

memory. In the figure, the executable code is located in flash memory, and the data and stack

areas are located in RAM. This use of regions is typical of operating systems that support sharing

code between tasks.

With the exception of the master level 1 (L1) page table, all page tables represent 1 MB

areas of virtual memory. If a region’s size is greater than 1 MB or crosses over the 1 MB

boundary addresses that separate page tables, then the description of a region must also include a

list of page tables. The page tables for a region will always be derived from sequential page table

entries in the master L1 page table. However, the locations of the L2 page tables in physical

memory do not need to be located sequentially.

Multitasking and the MMU
Page tables can reside in memory and not be mapped to MMU hardware. One way to

build a multitasking system is to create separate sets of page tables, each mapping a unique

virtual memory space for a task. To activate a task, the set of page tables for the specific task and

its virtual memory space are mapped into use by the MMU. The other sets of inactive page tables

represent dormant tasks. This approach allows all tasks to remain resident in physical memory

and still be available immediately when a context switch occurs to activate it.

By activating different page tables during a context switch, it is possible to execute

multiple tasks with overlapping virtual addresses. The MMU can relocate the execution address

of a task without the need to move it in physical memory. The task’s physical memory is simply

mapped into virtual memory by activating and deactivating page tables. Figure 14.4 shows three

views of three tasks with their own sets of page tables running at a common execution virtual

address of 0x0400000.

In the first view, Task 1 is running, and Task 2 and Task 3 are dormant. In the second

view, Task 2 is running, and Task 1 and Task 3 are dormant. In the third view, Task 3 is running,

and Task 1 and Task 2 are dormant. The virtual memory in each of the three views represents

memory as seen by the running task. The view of physical memory is the same in all views

because it represents the actual state of real physical memory.

To switch between tasks requires the following steps:

 Save the active task context and place the task in a dormant state.

 Flush the caches; possibly clean the D-cache if using a writeback policy.

 Flush the TLB to remove translations for the retiring task.

 Configure the MMU to use new page tables translating the virtual memory execution area

to the awakening task’s location in physical memory.

 Restore the context of the awakening task.

 Resume execution of the restored task.

Memory Organization in a Virtual Memory System
Typically, page tables reside in an area of main memory where the virtual-to-physical

address mapping is fixed. By “fixed,” we mean data in a page table doesn’t change during normal

operation, as shown in below Figure. This fixed area of memory also contains the operating

system kernel and other processes. The MMU, which includes the TLB shown in Figure 14.5, is

hardware that operates outside the virtual or physical memory space; its function is to translate

addresses between the two memory spaces.

When a context switch occurs between two application tasks, the processor in reality

makes many context switches. It changes from a user mode task to a kernel mode task to perform

the actual movement of context data in preparation for running the next applica- tion task. It then

changes from the kernel mode task to the new user mode task of the next context.

By sharing the system software in a fixed area of virtual memory that is seen across all

user tasks, a system call can branch directly to the system area and not worry about needing to

change page tables to map in a kernel process. Making the kernel code and data map to the same

virtual address in all tasks eliminates the need to change the memory map and the need to have

an independent kernel process that consumes a time slice.

Details of the ARM MMU
The ARM MMU performs several tasks: It translates virtual addresses into physical

addresses, it controls memory access permission, and it determines the individual behav- ior of

the cache and write buffer for each page in memory. When the MMU is disabled, all virtual

addresses map one-to-one to the same physical address. If the MMU is unable to translate an

address, it generates an abort exception. The MMU will only abort on translation, permission,

and domain faults.

The main software configuration and control components in the MMU are

 Page tables

 The Translation Lookaside Buffer (TLB)

 Domains and access permission

 Caches and write buffer

 The CP15:c1 control register

 The Fast Context Switch Extension

Page Tables

The ARM MMU hardware has a multilevel page table architecture. There are two levels of page

table: level 1 (L1) and level 2 (L2).

There is a single level 1 page table known as the L1 master page table that can contain two

types of page table entry. It can hold pointers to the starting address of level 2 page tables, and

page table entries for translating 1 MB pages. The L1 master table is also known as a section

page table.

The master L1 page table divides the 4 GB address space into 1 MB sections; hence the L1

page table contains 4096 page table entries. The master table is a hybrid table that acts

as both a page directory of L2 page tables and a page table translating 1 MB virtual pages called

sections. If the L1 table is acting as a directory, then the PTE contains a pointer to either an L2

coarse or L2 fine page table that represents 1 MB of virtual memory. If the L1 master table is

translatinga1 MB section, then the PTE contains the base address of the 1 MB page frame in

physical memory. The directory entries and 1 MB section entries can coexist in the master page

table.

A coarse L2 page table has 256 entries consuming 1 KB of main memory. Each PTE in a

coarse page table translatesa4 KB block of virtual memory toa4 KB block in physical memory. A

coarse page table supports either 4 or 64 KB pages. The PTE in a coarse page contains the base

address to eithera4 or 64 KB page frame; if the entry translates a 64 KB page, an identical PTE

must be repeated in the page table 16 times for each 64 KB page.

A fine page table has 1024 entries consuming 4 KB of main memory. Each PTE in a fine page

translatesa1 KB block of memory. A fine page table supports 1, 4, or 64 KB pages in virtual

memory. These entries contain the base address of a 1, 4, or 64 KB page frame in physical

memory. If the fine table translatesa4 KB page, then the same PTE must be repeated 4

consecutive times in the page table. If the table translates a 64 KB page, then the same PTE must

be repeated 64 consecutive times in the page table.

Level 1 Page Table Entries

The level 1 page table accepts four types of entry:

 A 1 MB section translation entry

 A directory entry that points to a fine L2 page table

 A directory entry that points to a coarse L2 page table

 A fault entry that generates an abort exception

Level 2 Page Table Entries

 There are four possible entries used in L2 page tables:

 A large page entry defines the attributes for a 64 KB page frame.

 A small page entry definesa4 KB page frame.

 A tiny page entry definesa1 KB page frame.

 A fault page entry generates a page fault abort exception when accessed.

The Translation Lookaside Buffer

The TLB is a special cache of recently used page translations. The TLB maps a virtual

page to an active page frame and stores control data restricting access to the page. The TLB is a

cache and therefore has a victim pointer and a TLB line replacement policy. In ARM processor

cores the TLB uses a round-robin algorithm to select which relocation register to replace on a

TLB miss.

The TLB in ARM processor cores does not have many software commands available to

control its operation. The TLB supports two types of commands: you can flush the TLB, and you

can lock translations in the TLB.

During a memory access, the MMU compares a portion of the virtual address to all the

values cached in the TLB. If the requested translation is available, it is a TLB hit, and the TLB

provides the translation of the physical address.

If the TLB does not contain a valid translation, it is a TLB miss. The MMU automatically

handles TLB misses in hardware by searching the page tables in main memory for valid

translations and loading them into one of the 64 lines in the TLB. The search for valid

translations in the page tables is known as a page table walk. If there is a valid PTE, the

hardware copies the translation address from the PTE to the TLB and generates the physical

address to access main memory. If, at the end of the search, there is a fault entry in the page

table, then the MMU hardware generates an abort exception.

During a TLB miss, the MMU may search up to two page tables before loading data to

the TLB and generating the needed address translation. The cost of a miss is generally one or two

main memory access cycles as the MMU translation table hardware searches the page tables. The

number of cycles depends on which page table the translation data is found in. A single-stage

page table walk occurs if the search ends with the L1 master page table; there is a two-stage page

table walk if the search ends with an L2 page table.

Single-Step Page Table Walk

Two-Step Page Table Walk

If the MMU ends its search for a page that is 1, 4, 16, or 64 KB in size, then the page

table walk will have taken two steps to find the address translation. the two-stage process for a

translation held in a coarse L2 page table. Note that the virtual address is divided into three parts.

In the first step, the L1 offset portion is used to index into the master L1 page table and

find the L1 PTE for the virtual address. If the lower two bits of the PTE contain the binary value

01, then the entry contains the L2 page table base address to a coarse page

In the second step, the L2 offset is combined with the L2 page table base address found in

the first stage; the resulting address selects the PTE that contains the translation for the page. The

MMU transfers the data in the L2 PTE to the TLB, and the base address is combined with the

offset portion of the virtual address to generate the requested address in physical memory.

Domains and Memory Access Permission
There are two different controls to manage a task’s access permission to memory: The

primary control is the domain, and a secondary control is the access permission set in the page

tables.

Domains control basic access to virtual memory by isolating one area of memory from

another when sharing a common virtual memory map. There are 16 different domains that

can be assigned to 1 MB sections of virtual memory and are assigned to a section by

setting the domain bit field in the master L1 PTE (see Figure 14.6).

When a domain is assigned to a section, it must obey the domain access rights assigned to

the domain. Domain access rights are assigned in the CP15:c3 register and control the processor

core’s ability to access sections of virtual memory.

The CP15:c3 register uses two bits for each domain to define the access permitted for

each of the 16 available domains. Table 14.5 shows the value and meaning of a domain access

bit field. Figure 14.12 gives the format of the CP15:c3:c0 register, which holds the domain

access control information. The 16 available domains are labeled from D0 to D15 in the figure.

Even if you don’t use the virtual memory capabilities provided by the MMU, you can still

use these cores as simple memory protection units: first, by mapping virtual memory directly to

physical memory, assigning a different domain to each task, then using domains to protect

dormant tasks by assigning their domain access to “no access.”

The Fast Context Switch Extension
The Fast Context Switch Extension (FCSE) is additional hardware in the MMU that is

considered an enhancement feature, which can improve system performance in an ARM

embedded system. The FCSE enables multiple independent tasks to run in a fixed overlap- ping

area of memory without the need to clean or flush the cache, or flush the TLB during a context

switch. The key feature of the FCSE is the elimination of the need to flush the cache and TLB.

Without the FCSE, switching from one task to the next requires a change in virtual

memory maps. If the change involves two tasks with overlapping address ranges, the infor-

mation stored in the caches and TLB become invalid, and the system must flush the caches and

TLB. The process of flushing these components adds considerable time to the task switch

because the core must not only clear the caches and TLB of invalid data, but it must also reload

data to the caches and TLB from main memory.

With the FCSE there is an additional address translation when managing virtual mem-

ory. The FCSE modifies virtual addresses before it reaches the cache and TLB using a special

relocation register that contains a value known as the process ID. ARM refers to the addresses in

virtual memory before the first translation as a virtual address (VA), and those addresses after the

first translation as a modified virtual address(MVA), shown in Figure 14.4. When using the

FCSE, all modified virtual addresses are active. Tasks are protected by using the domain access

facilities to block access to dormant tasks. We discuss this in more detail in the next section.

Switching between tasks does not involve changing page tables; it simply requires

writing the new task’s process ID into the FCSE process ID register located in CP15. Because a

task switch does not require changing the page tables, the caches and TLB remain valid after the

switch and do not need flushing.

When using the FCSE, each task must execute in the fixed virtual address range from

0x00000000 to 0x1FFFFFFF and must be located in a different 32 MB area of modified virtual

memory. The system shares all memory addresses above 0x2000000, and uses domains to

protect tasks from each other. The running task is identified by its current process ID.

To utilize the FCSE, compile and link all tasks to run in the first 32 MB block of virtual

memory (VA) and assign a unique process ID. Then place each task in a different 32 MB

partition of modified virtual memory using the following relocation formula:

MVA= VA + (0x2000000 ∗ process ID)

To calculate the starting address of a task partition in modified virtual memory, take a

value of zero for the VA and the task’s process ID, and use these values in Equation.

The value held in the CP15:c13:c0 register contains the current process ID. The process

ID bit field in the register is seven bits wide and supports 128 process IDs. The format of the

register.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

M. Tech – (VLSI & Embedded Systems)

(R18D6803) EMBEDDED SYSTEM DESIGN

Internal Marks Assessment

S.No. ROLL NO. Name of the Student

MID-I MID-II

1 19N31D6801 ADEPU HARI PRIYA
26 12

2 19N31D6802 ALGAPALLY SANTOSH SAGAR
27 27

3 19N31D6803 BADDAM SINDHU REDDY
12 26

4 19N31D6804 BANGARIGALLA SHEKARBABU
12 24

5 19N31D6805 CHIPPA PRITHVI RAJ
21 23

6 19N31D6806 DANAVATH NAGAMMA
26 23

7 19N31D6807 DEETI ADIKYA
26 27

8 19N31D6808 DOKKU VARA LAKSHMI
26 24

9 19N31D6809 GADHARI KEERTHANA
26 28

10 19N31D6810 GEDDADA SANDEEP VARMA
26 26

11 19N31D6811
KATTA VIDUSHEE KUMARI VISHWA
KARMA

25 26

12 19N31D6812 KODE SASIKALA
29 24

13 19N31D6813 KUNDETI MAMATHA
27 22

14 19N31D6814 NAGANABOINA SUMAN
24 26

15 19N31D6815 POLAPALLI MANASA
22 24

16 19N31D6816 POLAPALLI SRIKANTH
26 27

17 19N31D6817 SAIKUMAR KURAKULA
24 23

18 19N31D6818 SANDEEP BALLEM
24 24

19 19N31D6819 SIDDA MANOJ KUMAR REDDY
20 20

20 19N31D6820 SUNKARI JASNAVI
28 28

21 19N31D6821 TALLURI SAI PRIYANKA
19 24

22 19N31D6822 TALLURI VENKATA RESHMA
12 26

23 19N31D6823 VENKATREDDY GARI PRATHAP REDDY
21 22

24 19N31D6824 VUTUKURI ANUSHA
22 23

Code No: R18D6803

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year - I Semester Regular/Supplementary Examinations, January-2020

Embedded System Design(VLSI&ES)

Roll No

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from

each SECTION and each Question carries 14 marks.

 SECTION-I

1 a) Discuss about various types of ARM Registers.

b) Describe about the instruction pipeline.

[7M]

[7M]

 OR

2 a) Explain about the interrupts and vector table of ARM.

b) Explain about the architecture revision.

[7M]

[7M]

 SECTION-II

3 a) Explain about the addressing modes of ARM.

b) With a suitable example, explain about the PSR instructions.

[7M]

[7M]

 OR

4 Why do we use controllers in embedded systems? Explain the [14M]

R18

 instruction set of ARM programming model-1.

 SECTION-III

5 a) What is the difference between instruction set and thumb

instruction set?

b) Explain about the Branch instructions and register usage
instructions.

[7M]

[7M]

 OR

6 a) Discuss about Software Interrupt Instructions
b) Explain about Single-Register and Multi Register Load-Store

Instructions

[6M]

[8M]

 SECTION-IV

7 a) Explain about the conditional execution and loops in ARM
programming with a suitable example.

b) With a suitable example, explain about the assembly code
using instruction scheduling in ARM programming.

[7M]

[7M]

 OR

8 a) Explain about ARM programming with one example.

b) Describe about the integer and floating point with a suitable
example.

[7M]

[7M]

SECTION-V

9 a) Explain about the Memory management unit and page tables.

b) Explain about the cache architecture in memory
management.

[7M]

[7M]

 OR

10 Write a short notes on

(i) Context switch and Register allocation
(ii) Flushing and cashes

[7 M]

[7 M]

Code No: R17D9303

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I-Year - I Semester Regular/Supplementary Examinations, Dec-18/Jan 19

Embedded System Design

(VLSI&ES)

Roll No

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each

SECTION and each Question carries 14marks.

 SECTION-I

1 a. Describe the complete ARM register set ?

b. Describe the conditional flags of ARM processor?

[7M]

[7M]

 OR

2 a. Describe the ARM nomenclature and architecture evaluation ?

b. Describe the pipelining execution process in ARM ?

[7M]

[7M]

 SECTION-II

3 Describe various addressing modes in ARM ? [14M]

 OR

4

Describe load-store instruction in detail ? [14M]

R17

 SECTION-III

5 Explain various thumb data processing instruction ? [14M]

 OR

6 Explain with example single-register and multiple-register load-store instruction? [14M]

 SECTION-IV

7 a. Explain pointer aliasing with an example?
b. Explain with example conditional execution ?

[7M]

[7M]

 OR

8 a. ARM9TDMI processor performs various operations in parallel explain them in detail?
b. What is pipeline interlock explain with example ?

[10M]

[4M]

 SECTION-V

9 a. How is memory organised in MMU?
b. Explain access permission in memory management

[7M]

[7M]

 OR

10 a. Explain flush and clean operation in cache?
b. What are the main software configuration and control components in MMU? Explain

in detail any two?

[7M]

[7M]

Code No: R15D9303

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I-Year - I Semester Supplementary Examinations, Dec-18/Jan-19

Embedded System Design

(VLSI&ES & SSP)

Roll No

Time: 3 hours Max. Marks: 75

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from

each SECTION and each Question carries 15 marks.

 SECTION-I

1 a) With a neat sketch discuss ARM programming model.

b) What do you mean by pipelining? Briefly discuss about five stage pipeline in

ARM.

[15M]

 OR

2 Explain how to measure the processor performance of an embedded hardware in

detail and explain the major application areas of embedded system.

[15M]

 SECTION-II

3 a)Explain Load, store instructions with examples.

b) What is the primary difference between a load/store architecture and a

register/memory architecture

[15M]

 OR

4

a) What are the unique features of the ARM instruction set? Explain
b) Briefly explain the ARM data processing instructions in detail with suitable

example.

[7M]

[8M]

 SECTION-III

5 Explain processor modes of ARM7 , also specify different branch instruction used to

exchange branch from ARM mode to THUMB mode.

[15M]

R15

 OR

6 Draw the format of ARM data processing instructions

Explain the various data operations in ARM.

[15M]

 SECTION-IV

7 a) Explain the different features of FPA10.

b) Discuss the coprocessor Register transfer instructions? Why the instruction cannot

used for Register transfer of CP15 coprocessor.

[15M]

 OR

8 Briefly explain the functions, pointers and structures using in ARM C programming [15M]

 SECTION-V

9 a) With a neat diagram discuss set associate cache and fully associative cache.

b) Elaborate advantages of having embedded memory on chip? How it is useful in

increasing the efficiency of the system.

[15M]

 OR

10 What are the different types of memories used in embedded system design? Explain

each with examples.

[15M]

	Current Program Status Register
	ARM Processor Families
	ARM9 Family
	ARM10 Family
	ARM11 Family
	Specialized Processors

	Branch Instructions
	Load-Store Instructions
	Single-Register Transfer
	Single-Register Load-Store Addressing Modes
	Multiple-Register Transfer

	Conditional Execution
	Thumb Register Usage
	Other Branch Instructions
	Basic C Data Types
	Function Argument Types

	C Looping Structures
	Loops with a Fixed Number of Iterations

	Structure Arrangement
	Basic Operation of a Cache Controller
	Details of the ARM MMU
	Page Tables
	Level 1 Page Table Entries
	Level 2 Page Table Entries
	 There are four possible entries used in L2 page tables:
	 A large page entry deﬁnes the attributes for a 64 KB page frame.
	 A small page entry deﬁnesa4 KB page frame.
	 A tiny page entry deﬁnesa1 KB page frame.
	 A fault page entry generates a page fault abort exception when accessed.

