
 

 

 
Embedded System Design 

(R22D6802) 

DIGITAL NOTES 

M.TECH 
(I YEAR – I SEM) 

(2023-24) 

 
  Department of Electronics and Communication Engineering 

 

 

 

                                                                                       
 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 

(Autonomous Institution – UGC, Govt. of India) 
Recognized under 2(f) and 12 (B) of UGC ACT 1956 

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) 

Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India 

 



EMBEDDED SYSTEM DESIGN 
Course Objectives: 
 

 Discuss the basic principles of ARM system design. 

 Identify the major hardware components ARM data path architecture. 

 Identify the design issues ARM based embedded system with the basic knowledge of 

firmware, embedded OS & ARM architectures. 

 Analyze the execution of instructions/program knowing the basic principles of ARM 

architecture and assembly language. 

 Compare programs written in C & assembly to execute on ARM platform. 

 
UNIT –I: 
 
ARM Architecture: 
 
ARM Design Philosophy, Registers, Program Status Register, Instruction Pipeline, Interrupts and 
Vector Table, Architecture Revision, ARM Processor Families. 
 
UNIT –II: 
 
ARM Programming Model – I: 
 
Instruction Set: Data Processing Instructions, Addressing Modes, Branch, Load, Store Instructions, 
PSR Instructions, Conditional Instructions. 
 
UNIT –III: 
 
ARM Programming Model – II: 
 
Thumb Instruction Set: Register Usage, Other Branch Instructions, Data Processing Instructions, 
Single-Register and Multi Register Load-Store Instructions, Stack, Software Interrupt Instructions 
 
UNIT –IV: 
 
ARM Programming: 
 
Simple C Programs using Function Calls, Pointers, Structures, Integer and Floating Point Arithmetic, 
Assembly Code using Instruction Scheduling, Register Allocation, Conditional Execution and Loops. 
 
UNIT –V: 
Memory Management: 
Cache Architecture, Polices, Flushing and Caches, MMU, Page Tables, Translation, Access 
Permissions, Context Switch. 
 
 
 
 
 
 
 
 



TEXT BOOKS: 
 
1. ARM Systems Developer’s Guides- Designing & Optimizing System Software – Andrew N. 
Sloss, Dominic Symes, Chris Wright, 2008, Elsevier. 
2. Professional Embedded ARM development-James A Langbridge, Wiley/Wrox 
 
 
REFERENCE BOOKS: 
 
1. Embedded Microcomputer Systems, Real Time Interfacing – Jonathan W. Valvano – Brookes 
/ Cole, 1999, Thomas Learning. 
2.ARM System on Chip Architecture, Steve Furber, 2nd Edition, Pearson 
 
Course Outcomes:  
 

 Become aware of the ARM Processor, Architecture, Registers, Instruction pipeline, Interrupts 

and Instructions, Addressing modes and conditional instructions. 

 Apply and analyze the applications in various processors and domains of embedded system. 

 Ability to use advanced controllers using thumb instruction for embedded system design. 

 Analyze and develop embedded hardware and software development cycles and tools. 

 Understanding the concept of Memory management unit, integration methods and 

hardwareand software design concepts associated with processor in Embedded Systems. 



UNIT-I 

ARM ARCHITECTURE 

ARM 

• ARM, previously Advanced RISC Machine, originally Acorn RISC Machine, is a family 

of Reduced Instruction Set Computing (RISC) Architecture for Computer Processors. 

• The ARM processor core is key component of many successful 32-bit embedded 

systems.  

The RISC design philosophy 

The design philosophy aimed at delivering the following. 

 simple but powerful instructions 

 single cycle execution at a high clock speed 

 intelligence in software rather than hardware 

 Provide greater flexibility on reducing the complexity of instructions. 

The ARM core uses RISC architecture. 

The RISC philosophy is implemented with four major design rules: 

1. Instructions – RISC processors have a reduced number of instruction classes. These 

classes provide simple operations that can each execute in a single cycle. The compiler or 

programmer synthesizes complicated operations (a divide operation) by combining 

several simple instructions. Each instruction is a fixed length to allow the pipeline to 

fetch future instructions before decoding the current instruction. In contrast, in CISC 

processors the instructions are often of variable size and take many cycles to execute. 

2. Pipelines —The processing of instructions is broken down into smaller units that can be 

executed in parallel by pipelines. Ideally the pipeline advances by one step on each cycle 

for maximum throughput. There is no need for an instruction to be executed by a mini 

program called microcode as on CISC processors. 

3. Registers—RISC machines have a large general-purpose register set. Any register can 

contain either data or an address. In contrast, CISC processors have dedicated registers 

for specific purposes. 



4. Load-store architecture--The processor operates on data held in registers. Separate load 

and store instructions transfer data between the register bank and external memory. In 

contrast, with a CISC design the data processing operations can act on memory directly. 

The ARM Design Philosophy 

There are a number of physical features that have driven the ARM processor design. 

1. Small to reduce power consumption and extend battery operation 

2. High code density 

3. Price sensitive and use slow and low-cost memory devices. 

4. Reduce the area of the die taken up by the embedded processor. 

5. Hardware debug technology 

6. ARM core is not a pure RISC architecture 

Registers: 

ARM processors provide general-purpose and special-purpose registers. Some additional 

registers are available in privileged execution modes. 

In all ARM processors, the following registers are available and accessible in any processor 

mode: 

 13 general-purpose registers R0-R12. 

 One Stack Pointer (SP). 

 One Link Register (LR). 

 One Program Counter (PC). 

 One Application Program Status Register (APSR). 

 

The amount of registers depends on the ARM version. According to the ARM Reference 

Manual, there are 30 general-purpose 32-bit registers, with the exception of ARMv6-M and 

ARMv7-M based processors. The first 16 registers are accessible in user-level mode, the 

additional registers are available in privileged software execution (with the exception of 

ARMv6-M and ARMv7-M). In this tutorial series we will work with the registers that are 

accessible in any privilege mode: r0-15. These 16 registers can be split into two groups: general 

purpose and special purpose registers. 

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473c/Babdfiih.html


 

R0-R12: can be used during common operations to store temporary values, pointers (locations to 

memory), etc. R0, for example, can be referred as accumulator during the arithmetic operations 

or for storing the result of a previously called function. R7 becomes useful while working with 

syscalls as it stores the syscall number and R11 helps us to keep track of boundaries on the stack 

serving as the frame pointer (will be covered later). Moreover, the function calling convention on 

ARM specifies that the first four arguments of a function are stored in the registers r0-r3. 

R13: SP (Stack Pointer). The Stack Pointer points to the top of the stack. The stack is an area of 

memory used for function-specific storage, which is reclaimed when the function returns. The 

stack pointer is therefore used for allocating space on the stack, by subtracting the value (in 

bytes) we want to allocate from the stack pointer. In other words, if we want to allocate a 32 bit 

value, we subtract 4 from the stack pointer. 

R14: LR (Link Register). When a function call is made, the Link Register gets updated with a 

memory address referencing the next instruction where the function was initiated from. Doing 

this allows the program return to the “parent” function that initiated the “child” function call 

after the “child” function is finished. 

R15: PC (Program Counter). The Program Counter is automatically incremented by the size of 

the instruction executed. This size is always 4 bytes in ARM state and 2 bytes in THUMB mode. 



When a branch instruction is being executed, the PC holds the destination address. During 

execution, PC stores the address of the current instruction plus 8 (two ARM instructions) in 

ARM state, and the current instruction plus 4 (two Thumb instructions) in Thumb(v1) state. This 

is different from x86 where PC always points to the next instruction to be executed. 

Current Program Status Register 

The Current Program Status Register (CPSR) holds the same program status flags as the APSR, 

and some additional information. 

The CPSR holds: 

 The APSR flags. 

 The processor mode. 

 The interrupt disable flags. 

 The instruction set state (ARM, Thumb, ThumbEE, or Jazelle®). 

 The endianness state (on ARMv4T and later). 

 The execution state bits for the IT block (on ARMv6T2 and later). 

 

The Current Program Status Register is a 32-bit wide register used in the ARM architecture to 

record various pieces of information regarding the state of the program being executed by the 

processor and the state of the processor. This information is recorded by setting or clearing 

specific bits in the register. 

The top four bits (bits 31, 30, 29, and 28) are the condition code (cc) bits and are of most interest 

to us. Condition code bits are sometimes referred to as "flags". The lowest 8 bits (bit 7 through to 

bit 0) store information about the processor's own state. The remaining bits (i.e. bit 27 to bit 8) 

are currently unused in most ARM processors. 



The N bit is the "negative flag" and indicates that a value is negative. 

The Z bit is the "zero flag" and is set when an appropriate instruction produces a zero result. 

The C bit is the "carry flag" but it can also be used to indicate "borrows" (from subtraction 

operations) and "extends" (from shift instructions (LINK)). 

The V bit is the "overflow flag" which is set if an instruction produces a result that overflows and 

hence may go beyond the range of numbers that can be represented in 2's complement signed 

format. 

For completeness, the other state bits are: 

The I and F bits which determine whether interrupts (such as requests for input/output) are 

enabled or disabled. 

The T bit which indicates whether the processor is in "Thumb" mode, where the processor can 

execute a subset of the assembly language as 16-bit compact instructions. As Thumb code packs 

more instructions into the same amount of memory, it is an effective solution to applications 

where physical memory is at a premium. 

The M4 to M0 bits are the mode bits. Application programs normally run in user mode (where 

the mode bits are 10000). Whenever an interrupt or similar event occurs, the processor switches 

into one of the alternative modes allowing the software handler greater privileges with regard to 

memory manipulation. 

M[4:0] Mode Accessible registers 

10000 User PC, R14 to R0, CPSR 

10001 FIQ PC, R14_fiq to R8_fiq, R7 to R0, CPSR, SPSR_fiq 

10010 IRQ PC, R14_irq, R13_irq, R12 to R0, CPSR, SPSR_irq 

10011 Supervisor PC, R14_svc, R13_svc, R12 to R0, CPSR, SPSR_svc 

10111 Abort PC, R14_abt, R13_abt, R12 to R0, CPSR, SPSR_abt 

11011 Undefined PC, R14_und, R13_und, R12 to R0, CPSR, SPSR_und 

11111 System PC, R14 to R0, CPSR 

 

The instruction pipeline 

The ARM uses a pipeline to increase the speed of the flow of instructions to the processor. This 

allows several operations to take place simultaneously, and the processing, and memory systems 

to operate continuously. 

A three-stage pipeline is used, so instructions are executed in three stages: 

 Fetch 



 Decode 

 Execute. 

The three-stage pipeline is shown in  

 

The instruction pipeline 

During normal operation, while one instruction is being executed, its successor is being decoded, 

and a third instruction is being fetched from memory. The program counter points to the 

instruction being fetched rather than to the instruction being executed. This is important because 

it means that the Program Counter (PC) value used in an executing instruction is always two 

instructions ahead of the address. 

 

The pipeline design for each ARM family differs. For example, The ARM9 core increases the 

pipeline length to five stages, as shown in Figure 2.9. The ARM9 adds a memory and writeback 

stage, which allows the ARM9 to process on average 1.1 Dhrystone MIPS per MHz—an 

increase in instruction throughput by around 13% compared with an ARM7. The maximum core 

frequency attainable using an ARM9 is also higher. 



The ARM10 increases the pipeline length still further by adding a sixth stage, as shown in Figure 

2.10. The ARM10 can process on average 1.3 Dhrystone MIPS per MHz, about 34% more 

throughput than an ARM7 processor core, but again at a higher latency cost. 

Even though the ARM9 and ARM10 pipelines are different, they still use the same pipeline 

executing characteristics as an ARM7. Code written for the ARM7 will execute on an ARM9 or 

ARM10. 

Interrupts and the Vector Table. 

When an exception or interrupt occurs, the processor sets the pc to a specific memory address. 

The address is within a special address range called the vector table. The entries in the vector 

table are instructions that branch to specific routines designed to handle a particular exception or 

interrupt. 

The memory map address 0x00000000 is reserved for the vector table, a set of 32-bit words. On 

some processors the vector table can be optionally located at a higher address in memory 

(starting at the offset 0xffff0000). Operating systems such as Linux and Microsoft’s embedded 

products can take advantage of this feature. 

When an exception or interrupt occurs, the processor suspends normal execution and starts 

loading instructions from the exception vector table (see Table 2.6). Each vector table entry 

contains a form of branch instruction pointing to the start of a specific routine: 

 

Reset vector is the location of the first instruction executed by the processor when power is 

applied. This instruction branches to the initialization code. 

Undefined instruction vector is used when the processor cannot decode an instruction. 

Software interrupt vector is called when you execute a SWI instruction. The SWI instruction is 

frequently used as the mechanism to invoke an operating system routine. 

Prefetch abort vector occurs when the processor attempts to fetch an instruction from an address 

without the correct access permissions. The actual abort occurs in the decode stage. 

Data abort vector is similar to a prefetch abort but is raised when an instruction attempts to 

access data memory without the correct access permissions. 

Interrupt request vector is used by external hardware to interrupt the normal execution flow of 

the processor. It can only be raised if IRQs are not masked in the cpsr. 

 

 



The vector table.  

Exception/interrupt Shorthand Address High address 

Reset RESET 0x00000000 0xffff0000 
Undefined instruction UNDEF 0x00000004 0xffff0004 
Software interrupt SWI 0x00000008 0xffff0008 
Prefetch abort PABT 0x0000000c 0xffff000c 
Data abort DABT 0x00000010 0xffff0010 
Reserved — 0x00000014 0xffff0014 
Interrupt request IRQ 0x00000018 0xffff0018 
Fast interrupt request FIQ 0x0000001c 0xffff001c 

 

Architecture Revision 

Every ARM processor implementation executes a specific instruction set architecture (ISA), 

although an ISA revision may have more than one processor implementation. 

The ISA has evolved to keep up with the demands of the embedded market. This evolution has 

been carefully managed by ARM, so that code written to execute on an earlier architecture 

revision will also execute on a later revision of the architecture. 

Before we go on to explain the evolution of the architecture, we must introduce the ARM 

processor nomenclature. The nomenclature identifies individual processors and provides basic 

information about the feature set. 

Nomenclature 

ARM uses the nomenclature shown in below Figure to describe the processor implemen- tations. 

The letters and numbers after the word “ARM” indicate the features a processor 

 

 

ARM{x}{y}{z}{T}{D}{M}{I}{E}{J}{F}{-S} 

 

x—family      y—memory management/protection unit  

z—cache      T—Thumb 16-bit decoder  

D—JTAG debug     M—fast multiplier  

I—EmbeddedICE macrocell    E—enhanced instructions (assumes TDMI)  



J—Jazelle      F—vector floating-point unit  

S—synthesizible version   

may have. In the future the number and letter combinations may change as more features are 

added. Note the nomenclature does not include the architecture revision information. 

There are a few additional points to make about the ARM nomenclature: 

 

■ All ARM cores after the ARM7TDMI include the TDMI features even though they may 

not include those letters after the “ARM” label. 

■ The processor family is a group of processor implementations that share the same 

hardware characteristics. For example, the ARM7TDMI, ARM740T, and ARM720T all share 

the same family characteristics and belong to the ARM7 family. 

■ JTAG is described by IEEE 1149.1 Standard Test Access Port and boundary scan archi- 

tecture. It is a serial protocol used by ARM to send and receive debug information between the 

processor core and test equipment. 

■ EmbeddedICE macrocell is the debug hardware built into the processor that allows 

breakpoints and watchpoints to be set. 

■ Synthesizable means that the processor core is supplied as source code that can be 

compiled into a form easily used by EDA tools. 

Architecture Evolution 

The architecture has continued to evolve since the first ARM processor implementation was 

introduced in 1985. Significant architecture enhancements from the original architecture version 

1 to the current version 6 architecture. One of the most significant changes to the ISA was the 

introduction of the Thumb instruction set in ARMv4T (the ARM7TDMI processor). 

The various parts of the program status register and the availabil- ity of certain features on 

particular instruction architectures. “All” refers to the ARMv4 architecture and above. 

 

ARM PROCESSOR FAMILIES 
ARM has designed a number of processors that are grouped into different families according to 

the core they use. The families are based on the ARM7, ARM9, ARM10, and ARM11 cores. The 

postfix numbers 7, 9, 10, and 11 indicate different core designs. The ascending number equates 



to an increase in performance and sophistication. ARM8 was developed but was soon 

superseded. 

Table 2.9 shows a rough comparison of attributes between the ARM7, ARM9, ARM10, and 

ARM11 cores. The numbers quoted can vary greatly and are directly dependent upon the type 

and geometry of the manufacturing process, which has a direct effect on the frequency (MHz) 

and power consumption (watts). 

 

Within each ARM family, there are a number of variations of memory management, cache, and 

TCM processor extensions. ARM continues to expand both the number of families available and 

the different variations within each family. 

You can find other processors that execute the ARM ISA such as StrongARM and XScale. These 

processors are unique to a particular semiconductor company, in this case Intel. 

Table 2.10 summarizes the different features of the various processors. The next subsections 

describe the ARM families in more detail, starting with the ARM7 family. 



 

ARM7 Family 

The ARM7 core has a Von Neumann–style architecture, where both data and instructions use the 

same bus. The core has a three-stage pipeline and executes the architecture ARMv4T instruction 

set. 

The ARM7TDMI was the first of a new range of processors introduced in 1995 by ARM. It is 

currently a very popular core and is used in many 32-bit embedded processors. It provides a very 

good performance-to-power ratio. The ARM7TDMI processor core has been licensed by many 

of the top semiconductor companies around the world and is the first core to include the Thumb 

instruction set, a fast multiply instruction, and the EmbeddedICE debug technology. 



 

 

One significant variation in the ARM7 family is the ARM7TDMI-S. The ARM7TDMI-S has the 

same operating characteristics as a standard ARM7TDMI but is also synthesizable. ARM720T is 

the most flexible member of the ARM7 family because it includes an MMU. The presence of the 

MMU means the ARM720T is capable of handling the Linux and Microsoft embedded platform 

operating systems. The processor also includes a unified 8K cache. The vector table can be 

relocated to a higher address by setting a coprocessor 15 register. 

Another variation is the ARM7EJ-S processor, also synthesizable. ARM7EJ-S is quite different 

since it includes a five-stage pipeline and executes ARMv5TEJ instructions. This version of the 

ARM7 is the only one that provides both Java acceleration and the enhanced instructions but 

without any memory protection. 

ARM9 FAMILY 
The ARM9 family was announced in 1997. Because of its five-stage pipeline, the ARM9 

processor can run at higher clock frequencies than the ARM7 family. The extra stages improve 

the overall performance of the processor. The memory system has been redesigned to follow the 

Harvard architecture, which separates the data D and instruction I buses. 



+ 
+ 

+ 

+ 

+ 

The first processor in the ARM9 family was the ARM920T, which includes a separate D I cache 

and an MMU. This processor can be used by operating systems requiring virtual memory 

support. ARM922T is a variation on the ARM920T but with half the D I cache size. 

The ARM940T includes a smaller D I cache and an MPU. The ARM940T is designed for 

applications that do not require a platform operating system. Both ARM920T and ARM940T 

execute the architecture v4T instructions. 

The next processors in the ARM9 family were based on the ARM9E-S core. This core is a 

synthesizable version of the ARM9 core with the E extensions. There are two variations: the 

ARM946E-S and the ARM966E-S. Both execute architecture v5TE instructions. They also 

support the optional embedded trace macrocell (ETM), which allows a developer to trace 

instruction and data execution in real time on the processor. This is important when debugging 

applications with time-critical segments. 

The ARM946E-S includes TCM, cache, and an MPU. The sizes of the TCM and caches are 

configurable. This processor is designed for use in embedded control applications that require 

deterministic real-time response. In contrast, the ARM966E does not have the MPU and cache 

extensions but does have configurable TCMs. 

The latest core in the ARM9 product line is the ARM926EJ-S synthesizable processor core, 

announced in 2000. It is designed for use in small portable Java-enabled devices such as 3G 

phones and personal digital assistants (PDAs). The ARM926EJ-S is the first ARM processor 

core to include the Jazelle technology, which accelerates Java bytecode execution. It features an 

MMU, configurable TCMs, and D I caches with zero or nonzero wait state memories. 

ARM10 Family 
The ARM10, announced in 1999, was designed for performance. It extends the ARM9 pipeline 

to six stages. It also supports an optional vector floating-point (VFP) unit, which adds a seventh 

stage to the ARM10 pipeline. The VFP significantly increases floating-point performance and is 

compliant with the IEEE 754.1985 floating-point standard. 

The ARM1020E is the first processor to use an ARM10E core. Like the ARM9E, it includes the 

enhanced E instructions. It has separate 32K D I caches, optional vector floating-point unit, and 

an MMU. The ARM1020E also has a dual 64-bit bus interface for increased performance. 

ARM1026EJ-S is very similar to the ARM926EJ-S but with both MPU and MMU. This 

processor has the performance of the ARM10 with the flexibility of an ARM926EJ-S. 

ARM11 Family 
The ARM1136J-S, announced in 2003, was designed for high performance and power- efficient 

applications. ARM1136J-S was the first processor implementation to execute architecture 

ARMv6 instructions. It incorporates an eight-stage pipeline with separate load- store and 



+ 

arithmetic pipelines. Included in the ARMv6 instructions are single instruction multiple data 

(SIMD) extensions for media processing, specifically designed to increase video processing 

performance. 

The ARM1136JF-S is an ARM1136J-S with the addition of the vector floating-point unit for fast 

floating-point operations. 

Specialized Processors 
StrongARM was originally co-developed by Digital Semiconductor and is now exclusively 

licensed by Intel Corporation. It is has been popular for PDAs and applications that require 

performance with low power consumption. It is a Harvard architecture with separate D I caches. 

StrongARM was the first high-performance ARM processor to include a five-stage pipeline, but 

it does not support the Thumb instruction set. 

Intel’s XScale is a follow-on product to the StrongARM and offers dramatic increases in 

performance. At the time of writing, XScale was quoted as being able to run up to 1 GHz. 

XScale executes architecture v5TE instructions. It is a Harvard architecture and is similar to the 

StrongARM, as it also includes an MMU. 

SC100 is at the other end of the performance spectrum. It is designed specifically for low-power 

security applications. The SC100 is the first SecurCore and is based on an ARM7TDMI core 

with an MPU. This core is small and has low voltage and current requirements, which makes it 

attractive for smart card applications. 

 

 

 

 

 

 

 



UNIT-II 

ARM Programming Model – I 

 

ARM instructions process data held in registers and only access memory with load and store 

instructions. ARM instructions commonly take two or three operands. For instance the ADD 

instruction below adds the two values stored in registers r1 and r2 (the source registers). It writes 

the result to register r3 (the destination register). 

Instruction 

Syntax 

Destination 

register 

(Rd) 

Source 

register 1 (Rn) 

Source 

register 2 (Rm) 

ADD r3, r1, r2 r3 r1 r2 

 

In the following sections we examine the function and syntax of the ARM instructions by 

instruction class—data processing instructions, branch instructions, 

load-store instructions, software interrupt instruction, and program status register instructions. 

Data Processing Instructions 

The data processing instructions manipulate data within registers. They are move instruc- tions, 

arithmetic instructions, logical instructions, comparison instructions, and multiply instructions. 

Most data processing instructions can process one of their operands using the barrel shifter. 

If you use the S suffix on a data processing instruction, then it updates the flags in the cpsr. Move 

and logical operations update the carry flag C, negative flag N, and zero flag Z. The carry flag is 

set from the result of the barrel shift as the last bit shifted out. The N flag is set to bit 31 of the 

result. The Z flag is set if the result is zero. 

Move Instructions 

Move is the simplest ARM instruction. It copies N into a destination register Rd, where N is a 

register or immediate value. This instruction is useful for setting initial values and transferring 

data between registers. 

 

 

 



Syntax: <instruction>{<cond>}{S} Rd, N 

 

MOV Move a 32-bit value into a register Rd = N 

MVN 
move the NOT of the 32-bit value into a 

register 
Rd = - N 

 

Gives a full description of the values allowed for the second operand N for all data processing 

instructions. Usually it is a register Rm or a constant preceded by #. 

 

Barrel Shifter 

MOV instruction where N is a simple register. But N can be more than just a register or 

immediate value; it can also be a register Rm that has been preprocessed by the barrel shifter 

prior to being used by a data processing instruction. 

Data processing instructions are processed within the arithmetic logic unit (ALU). A unique and 

powerful feature of the ARM processor is the ability to shift the 32-bit binary pattern in one of 

the source registers left or right by a specific number of positions before it enters the ALU. This 

shift increases the power and flexibility of many data processing operations. 

There are data processing instructions that do not use the barrel shift, for example, the MUL 

(multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add) instructions. 

Pre-processing or shift occurs within the cycle time of the instruction. This is particularly useful 

for loading constants into a register and achieving fast multiplies or division by a power of 2. 

 

 



 

 

Arithmetic Instructions 

The arithmetic instructions implement addition and subtraction of 32-bit signed and unsigned 

values. 



 

Using the Barrel Shifter with Arithmetic Instructions 

The wide range of second operand shifts available on arithmetic and logical instructions is a very 

powerful feature of the ARM instruction set. illustrates the use of the inline barrel shifter with an 

arithmetic instruction. The instruction multiplies the value stored in register r1 by three. 

 



 

 



 

 



BRANCH INSTRUCTIONS 

A branch instruction changes the flow of execution or is used to call a routine. This type of 

instruction allows programs to have subroutines, if-then-else structures, and loops. 

The change of execution flow forces the program counter pc to point to a new address. The 

ARMv5E instruction set includes four different branch instructions. 

 

Syntax: B{<cond>} label 

BL{<cond>} label  

BX{<cond>} Rm  

BLX{<cond>} label | Rm 

 

B branch pc = label 

BL branch with link 

pc = label 

lr = address of the next instruction after the BL 

BX branch exchange pc = Rm  &  0xfffffffe, T = Rm  &1 

BLX 
branch exchange 

with link 

pc = label, T =1 

pc = Rm  & 0xfffffffe, T = Rm  &1 

lr = address of the next instruction after the 

BLX 

 

The address label is stored in the instruction as a signed pc-relative offset and must be 

within approximately 32 MB of the branch instruction. T refers to the Thumb bit in the cpsr. 

When instructions set T, the ARM switches to Thumb state. 

 

 



Example: 

This example shows a forward and backward branch. Because these loops are address 

specific, we do not include the pre- and post-conditions. The forward branch skips three 

instructions. The backward branch creates an infinite loop. 

 

Branches are used to change execution flow. Most assemblers hide the details of a branch 

instruction encoding by using labels. In this example, forward and backward are the labels. The 

branch labels are placed at the beginning of the line and are used to mark an address that can be 

used later by the assembler to calculate the branch offset. 

LOAD-STORE INSTRUCTIONS 

Load-store instructions transfer data between memory and processor registers. There are 

three types of load-store instructions: single-register transfer, multiple-register transfer, and 

swap. 

SINGLE-REGISTER TRANSFER 

These instructions are used for moving a single data item in and out of a register. The 

datatypes supported are signed and unsigned words (32-bit), halfwords (16-bit), and bytes. Here 

are the various load-store single-register transfer instructions. 



 

SINGLE-REGISTER LOAD-STORE ADDRESSING MODES 
The ARM instruction set provides different modes for addressing memory. These modes 

incorporate one of the indexing methods: preindex with writeback, preindex, and postindex 

 



 

 



MULTIPLE-REGISTER TRANSFER 
Load-store multiple instructions can transfer multiple registers between memory and the 

processor in a single instruction. The transfer occurs from a base address register Rn pointing 

into memory. Multiple-register transfer instructions are more efficient from single-register 

transfers for moving blocks of data around memory and saving and restoring context and stacks. 

 

 



 

 



 



 

CONDITIONAL EXECUTION 

Most ARM instructions are conditionally executed—you can specify that the instruction 

only executes if the condition code flags pass a given condition or test. By using conditional 

execution instructions you can increase performance and code density. 

The condition field is a two-letter mnemonic appended to the instruction mnemonic. 

The default mnemonic is AL, or always execute. 

Conditional execution reduces the number of branches, which also reduces the number of 

pipeline flushes and thus improves the performance of the executed code. Conditional execution 

depends upon two components: the condition field and condition flags. The condition field is 

located in the instruction, and the condition flags are located in the cpsr.  



 



Unit-III 

ARM Programming Model – II 

Thumb Instruction Set 

Thumb encodes a subset of the 32-bit ARM instructions into a 16-bit instruction set 

space. Since Thumb has higher performance than ARM on a processor with a 16-bit data bus, but 

lower performance than ARM on a 32-bit data bus, use Thumb for memory-constrained systems. 

Thumb has higher code density—the space taken up in memory by an executable 

program—than ARM. For memory-constrained embedded systems, for example, mobile phones 

and PDAs, code density is very important. Cost pressures also limit memory size, width, and 

speed. 

On average, a Thumb implementation of the same code takes up around 30% less 

memory than the equivalent ARM implementation. As an example, the same divide code routine 

implemented in ARM and Thumb assembly code. Even though the Thumb implementation uses 

more instructions, the overall memory footprint is reduced. Code density was the main driving 

force for the Thumb instruction set. Because it was also designed as a compiler target, rather than 

for hand-written assembly code, we recommend that you write Thumb-targeted code in a high-

level language like C or C++. 

Each Thumb instruction is related to a 32-bit ARM instruction. A simple Thumb ADD 

instruction being decoded into an equivalent ARM ADD instruction. Only the branch relative 

instruction can be conditionally executed. The limited space available in 16 bits causes the barrel 

shift operations ASR, LSL, LSR, and ROR to be separate instructions in the Thumb ISA. 



 

 



 

Thumb instruction set. 

THUMB REGISTER USAGE 

In Thumb state, you do not have direct access to all registers. Only the low registers r0 to 

r7 are fully accessible, as shown in below Table 4.2. The higher registers r8 to r12 are only 

accessible with MOV, ADD, or CMP instructions. CMP and all the data processing instructions 

that operate on low registers update the condition flags in the cpsr. 

 



− 
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You may have noticed from the Thumb instruction set list and from the Thumb register 

usage table that there is no direct access to the cpsr or spsr. In other words, there are no MSR- 

and MRS-equivalent Thumb instructions. 

To alter the cpsr or spsr, you must switch into ARM state to use MSR and MRS. 

Similarly, there are no coprocessor instructions in Thumb state. You need to be in ARM state to 

access the coprocessor for configuring cache and memory management. 

OTHER BRANCH INSTRUCTIONS 
There are two variations of the standard branch instruction, or B. The first is similar to the 

ARM version and is conditionally executed; the branch range is limited to a signed 8-bit 

immediate, or 256 to +254 bytes. The second version removes the conditional part of the 

instruction and expands the effective branch range to a signed 11-bit immediate, or 2048 to 

+2046 bytes. 

The conditional branch instruction is the only conditionally executed instruction in 

Thumb state. 

 

Syntax: B<cond> label  

                B label  

                BL label 

 

 

 

 



 

 



 

 



 

 



 



UNIT –IV 

ARM Programming 

BASIC C DATA TYPES 

There are also differences between the addressing modes available when loading and 

storing data of each type. 

ARM processors have 32-bit registers and 32-bit data processing operations. The ARM 

architecture is a RISC load/store architecture. In other words you must load values from memory 

into registers before acting on them. There are no arithmetic or logical instructions that manipulate 

values in memory directly. 

Early versions of the ARM architecture (ARMv1 to ARMv3) provided hardware support 

for loading and storing unsigned 8-bit and unsigned or signed 32-bit values. 

 

These architectures were used on processors prior to the ARM7TDMI. The load/store 

instruction classes available by ARM architecture. 

In loads that act on 8- or 16-bit values extend the value to 32 bits before writing to an ARM 

register. Unsigned values are zero-extended, and signed values sign-extended. This means that the 

cast of a loaded value to an int type does not cost extra instructions. Similarly, a store of an 8- or 

16-bit value selects the lowest 8 or 16 bits of the register. The cast of an int to smaller type does 

not cost extra instructions on a store. 

The ARMv4 architecture and above support signed 8-bit and 16-bit loads and stores 

directly, through new instructions. Since these instructions are a later addition, they do not support 

as many addressing modes as the pre-ARMv4 instructions.  



≥ 

Finally, ARMv5 adds instruction support for 64-bit load and stores. This is available in 

ARM9E and later cores. 

Prior to ARMv4, ARM processors were not good at handling signed 8-bit or any 16-bit 

values. Therefore ARM C compilers define char to be an unsigned 8-bit value, rather than a signed 

8-bit value as is typical in many other compilers. 

Compilers armcc and gcc use the datatype mappings in Table 5.2 for an ARM target. The 

exceptional case for type char is worth noting as it can cause problems when you are porting code 

from another processor architecture. A common example is using a char type variable i as a loop 

counter, with loop continuation condition i 0. As i is unsigned for the ARM compilers, the loop 

will never terminate. Fortunately armcc produces a warning in this situation: unsigned comparison 

with 0. Compilers also provide an override switch to make char signed. For example, the command 

line option -fsigned-char will make char signed on gcc. The command line option -zc will have the 

same effect with armcc. 

 

FUNCTION ARGUMENT TYPES 

 local variables from types char or short to type int increases performance and 

reduces code size. The same holds for function arguments. Consider the following simple function, 

which adds two 16-bit values, halving the second, and returns a 16-bit sum: 

short add_v1(short a, short b) 

{ 

return a + (b >> 1); 

} 

 

 



− + 

This function is a little artificial, but it is a useful test case to illustrate the problems faced 

by the compiler. The input values a, b, and the return value will be passed in 32-bit ARM registers. 

Should the compiler assume that these 32-bit values are in the range of a short type, that is, 32,768 

to 32,767? Or should the compiler force values to be in this range by sign-extending the lowest 16 

bits to fill the 32-bit register? The compiler must make compatible decisions for the function caller 

and callee. Either the caller or callee must perform the cast to a short type. 

We say that function arguments are passed wide if they are not reduced to the range of the 

type and narrow if they are. You can tell which decision the compiler has made by looking at the 

assembly output for add_v1. If the compiler passes arguments wide, then the callee must reduce 

function arguments to the correct range. If the compiler passes arguments narrow, then the caller 

must reduce the range. If the compiler returns values wide, then the caller must reduce the return 

value to the correct range. If the compiler returns values narrow, then the callee must reduce the 

range before returning the value. 

For armcc in ADS, function arguments are passed narrow and values returned narrow. In 

other words, the caller casts argument values and the callee casts return values. The compiler uses 

the ANSI prototype of the function to determine the datatypes of the function arguments. 

The armcc output for add_v1 shows that the compiler casts the return value to a short type, 

but does not cast the input values. It assumes that the caller has already ensured that the 32-bit 

values r0 and r1 are in the range of the short type. This shows narrow passing of arguments and 

return value. 

 

The gcc compiler we used is more cautious and makes no assumptions about the range of 

argument value. This version of the compiler reduces the input arguments to the range 



 

C LOOPING STRUCTURES 
This section looks at the most efficient ways to code for and while loops on the ARM. We 

start by looking at loops with a fixed number of iterations and then move on to loops with a 

variable number of iterations. Finally we look at loop unrolling. 

LOOPS WITH A FIXED NUMBER OF ITERATIONS 

What is the most efficient way to write a for loop on the ARM? Let’s return to our 

checksum example and look at the looping structure. 

The first point to note about the procedure call standard is the four-register rule. Functions 

with four or fewer arguments are far more efficient to call than functions with five or more 

arguments. For functions with four or fewer arguments, the compiler can pass all the arguments in 

registers. For functions with more arguments, both the caller and callee must access the stack for 

some arguments. Note that for C++ the first argument to an object method is the this pointer. This 

argument is implicit and additional to the explicit arguments. 

 



 

 



Function Call: 

The ARM Procedure Call Standard (APCS) defines how to pass function arguments and 

return values in ARM registers. The more recent ARM-Thumb Procedure Call Standard (ATPCS) 

covers ARM and Thumb interworking as well. 

The first four integer arguments are passed in the first four ARM registers: r0, r1, r2, and 

r3. Subsequent integer arguments are placed on the full descending stack, ascending in memory 

Function return integer values are passed in r0. 

This description covers only integer or pointer arguments. Two-word arguments such as 

long long or double are passed in a pair of consecutive argument registers and returned in r0, r1. 

The compiler may pass structures in registers or by reference according to command line compiler 

options. 

The first point to note about the procedure call standard is the four-register rule. Functions 

with four or fewer arguments are far more efficient to call than functions with five or more 

arguments. For functions with four or fewer arguments, the compiler can pass all the arguments in 

registers. For functions with more arguments, both the caller and callee must access the stack for 

some arguments. Note that for C++ the first argument to an object method is the this pointer. This 

argument is implicit and additional to the explicit arguments. 

If your C function needs more than four arguments, or your C++ method more than three 

explicit arguments, then it is almost always more efficient to use structures. Group related 

arguments into structures, and pass a structure pointer rather than mul- tiple arguments. Which 

arguments are related will depend on the structure of your software. 

 

 



Pointer Aliasing 

Two pointers are said to alias when they point to the same address. If you write to one 

pointer, it will affect the value you read from the other pointer. In a function, the compiler often 

doesn’t know which pointers can alias and which pointers can’t. The compiler must be very 

pessimistic and assume that any write to a pointer may affect the value read from any other 

pointer, which can significantly reduce code efficiency. 

Let’s start with a very simple example. The following function increments two timer values 

by a step amount: 

 

 

 



STRUCTURE ARRANGEMENT 
The way you lay out a frequently used structure can have a significant impact on its perfor- 

mance and code density. There are two issues concerning structures on the ARM: alignment of the 

structure entries and the overall size of the structure. 

For architectures up to and including ARMv5TE, load and store instructions are only 

guaranteed to load and store values with address aligned to the size of the access width. Table 5.4 

summarizes these restrictions. 

For this reason, ARM compilers will automatically align the start address of a structure to a 

multiple of the largest access width used within the structure (usually four or eight bytes) and align 

entries within structures to their access width by inserting padding. 

For example, consider the structure 

struct {  

char a;  

int b;  

char c;  

short d; 

} 

For a little-endian memory system the compiler will lay this out adding padding to ensure 

that the next object is aligned to the size of that object: 

 



Floating Point 

The majority of ARM processor implementations do not provide hardware floating-point 

support, which saves on power and area when using ARM in a price-sensitive, embedded 

application. With the exceptions of the Floating Point Accelerator (FPA) used on the ARM7500FE 

and the Vector Floating Point accelerator (VFP) hardware, the C compiler must provide support 

for floating point in software. 

In practice, this means that the C compiler converts every floating-point operation into a 

subroutine call. The C library contains subroutines to simulate floating-point behavior using 

integer arithmetic. This code is written in highly optimized assembly. Even so, floating-point 

algorithms will execute far more slowly than corresponding integer algorithms. 

If you need fast execution and fractional values, you should use fixed-point or block- 

floating algorithms. Fractional values are most often used when processing digital signals such as 

audio and video. This is a large and important area of programming, For best performance you 

need to code the algorithms in assembly 

Instruction Scheduling 

The time taken to execute instructions depends on the implementation pipeline. For this 

chapter, we assume ARM9TDMI pipeline timings.  

The following rules summarize the cycle timings for common instruction classes on the 

ARM9TDMI. 

Instructions that are conditional on the value of the ARM condition codes in the cpsr take one 

cycle if the condition is not met. If the condition is met, then the following rules apply: 

 
■ ALU operations such as addition, subtraction, and logical operations take one cycle. This 

includes a shift by an immediate value. If you use a register-specified shift, then add one cycle. If 

the instruction writes to the pc, then add two cycles. 

■ Load instructions that load N 32-bit words of memory such as LDR and LDM take N 

cycles to issue, but the result of the last word loaded is not available on the following cycle. The 

updated load address is available on the next cycle. This assumes zero-wait-state memory for an 

uncached system, or a cache hit for a cached system. An LDM of a single value is exceptional, 

taking two cycles. If the instruction loads pc, then add two cycles. 

■ Load instructions that load 16-bit or 8-bit data such as LDRB, LDRSB, LDRH, and 

LDRSH take one cycle to issue. The load result is not available on the following two cycles. The 

updated load address is available on the next cycle. This assumes zero-wait-state memory for an 

uncached system, or a cache hit for a cached system. 

■ Branch instructions take three cycles. 

■ Store instructions that store N values take N cycles. This assumes zero-wait-state memory 

for an uncached system, or a cache hit or a write buffer with N free entries for a cached system. An 

STM of a single value is exceptional, taking two cycles. 



− − 

■ Multiply instructions take a varying number of cycles depending on the value of the second 

operand in the product (see Table D.6 in Section D.3). 

 

To understand how to schedule code efficiently on the ARM, we need to understand the ARM 

pipeline and dependencies. The ARM9TDMI processor performs five operations in parallel: 

 
■ Fetch: Fetch from memory the instruction at address pc. The instruction is loaded into the 

core and then processes down the core pipeline. 

■ Decode: Decode the instruction that was fetched in the previous cycle. The processor also 

reads the input operands from the register bank if they are not available via one of the forwarding 

paths. 

■ ALU: Executes the instruction that was decoded in the previous cycle. Note this instruc- 

tion was originally fetched from address pc 8 (ARM state) or pc 4 (Thumb state). Normally this 

involves calculating the answer for a data processing operation, or the address for a load, store, or 

branch operation. Some instructions may spend several cycles in this stage. For example, multiply 

and register-controlled shift operations take several ALU cycles. 

 

 



 

Conditional Execution 
 The processor core can conditionally execute most ARM instructions. This conditional 

execution is based on one of 15 condition codes. If you don’t specify a condition, the 

 

assembler defaults to the execute always condition (AL). The other 14 conditions split into 

seven pairs of complements. The conditions depend on the four condition code flags N, Z, C, V 

stored in the cpsr register. See Table A.2 in Appendix A for the list of possible ARM conditions.  

By default, ARM instructions do not update the N, Z, C, V flags in the ARM cpsr. For most 

instructions, to update these flags you append an S suffix to the instruction mnemonic. Exceptions 

to this are comparison instructions that do not write to a destination register. Their sole purpose is 

to update the flags and so they don’t require the S suffix. 



By combining conditional execution and conditional setting of the flags, you can imple- 

ment simple if statements without any need for branches. This improves efficiency since branches 

can take many cycles and also reduces code size. 

 

 



 

 

 



UNIT-5 

Memory Management 

 

 

 

 



 

 

BASIC OPERATION of A CACHE CONTROLLER 

The cache controller is hardware that copies code or data from main memory to cache memory 

automatically. It performs this task automatically to conceal cache operation from the software it 

supports. Thus, the same application software can run unaltered on systems with and without a 

cache. 

The cache controller intercepts read and write memory requests before passing them on to the 

memory controller. It processes a request by dividing the address of the request into three fields, 

the tag field, the set index field, and the data index field. The three bit fields are shown in Figure 

12.4. 

First, the controller uses the set index portion of the address to locate the cache line within the 

cache memory that might hold the requested code or data. This cache line contains the cache-tag 

and status bits, which the controller uses to determine the actual data stored there. 

The controller then checks the valid bit to determine if the cache line is active, and compares the 

cache-tag to the tag field of the requested address. If both the status check and comparison 

succeed, it is a cache hit. If either the status check or comparison fails, it is a cache miss.  



On a cache miss, the controller copies an entire cache line from main memory to cache memory 

and provides the requested code or data to the processor. The copying of a cache line from main 

memory to cache memory is known as a cache line fill. 

On a cache hit, the controller supplies the code or data directly from cache memory to the 

processor. To do this it moves to the next step, which is to use the data index field of the address 

request to select the actual code or data in the cache line and provide it to the processor.  

 



 

Changing the memory configuration of a system may require cleaning or flushing a cache. The 

need to clean or flush a cache results directly from actions like changing the access permission, 

cache, and buffer policy, or remapping virtual addresses. 

The cache may also need cleaning or flushing before the execution of self-modifying code in a 

split cache. Self-modifying code includes a simple copy of code from one location to another. 

The need to clean or flush arises from two possible conditions: First, the self- modifying code 

may be held in the D-cache and therefore be unavailable to load from main memory as an 

instruction. Second, existing instructions in the I-cache may mask new instructions written to 

main memory. 

If a cache is using a writeback policy and self-modifying code is written to main memory, the 

first step is to write the instructions as a block of data to a location in main memory. At a later 

time, the program will branch to this memory and begin executing from that area of memory as 

an instruction stream. During the first write of code to main memory as data, it may be written to 

cache memory instead; this occurs in an ARM cache if valid cache lines exist in cache memory 

representing the location where the self-modifying code is written. The cache lines are copied to 



the D-cache and not to main memory. If this is the case, then when the program branches to the 

location where the self-modifying code should be, it will execute old instructions still present 

because the self-modifying code is still in the D-cache. To prevent this, clean the cache, which 

forces the instructions stored as data into main memory, where they can be read as an instruction 

stream. 

If the D-cache has been cleaned, new instructions are present in main memory. However, the I -

cache may have valid cache lines stored for the addresses where the new data (code) was written. 

Consequently, a fetch of the instruction at the address of the copied code would retrieve the old 

code from the I-cache and not the new code from main memory. Flush the I-cache to prevent this 

from happening. 

DETAILS of THE ARM MMU 
The ARM MMU performs several tasks: It translates virtual addresses into physical addresses, it 

controls memory access permission, and it determines the individual behav- ior of the cache and 

write buffer for each page in memory. When the MMU is disabled, all virtual addresses map 

one-to-one to the same physical address. If the MMU is unable to translate an address, it 

generates an abort exception. The MMU will only abort on translation, permission, and domain 

faults. 

The main software configuration and control components in the MMU are 

 Page tables 

 The Translation Lookaside Buffer (TLB) 

 Domains and access permission 

 Caches and write buffer 

 The CP15:c1 control register 

 The Fast Context Switch Extension 

 

Memory Management Unit (MMU) 

 When creating a multitasking embedded system, it makes sense to have an easy way to 

write, load, and run independent application tasks. Many of today’s embedded systems use an 

operating system instead of a custom proprietary control system to simplify this process. More 

advanced operating systems use a hardware-based memory management unit (MMU). 

One of the key services provided by an MMU is the ability to manage tasks as indepen- 

dent programs running in their own private memory space. A task written to run under the 

control of an operating system with an MMU does not need to know the memory requirements of 

unrelated tasks. This simplifies the design requirements of individual tasks running under the 

control of an operating system. 



The processor cores with memory protection units. These cores have a single addressable 

physical memory space. The addresses generated by the processor core while running a task are 

used directly to access main memory, which makes it impossible for two programs to reside in 

main memory at the same time if they are compiled using addresses that overlap. This makes 

running several tasks in an embedded system difficult because each task must run in a distinct 

address block in main memory. 

The MMU simplifies the programming of application tasks because it provides the 

resources needed to enable virtual memory—an additional memory space that is indepen- dent of 

the physical memory attached to the system. The MMU acts as a translator, which converts the 

addresses of programs and data that are compiled to run in virtual memory to the actual physical 

addresses where the programs are stored in physical main memory. This translation process 

allows programs to run with the same virtual addresses while being held in different locations in 

physical memory. 

This dual view of memory results in two distinct address types: virtual addresses and physical 

addresses. Virtual addresses are assigned by the compiler and linker when locating a program in 

memory. Physical addresses are used to access the actual hardware components of main memory 

where the programs are physically located. 

ARM provides several processor cores with integral MMU hardware that efficiently support 

multitasking environments using virtual memory. The goal of this chapter is to learn the basics of 

ARM memory management units and some basic concepts that underlie the use of virtual 

memory. 

 

Virtual Memory Works 
In an MMU, tasks can run even if they are compiled and linked to run in regions with 

overlapping addresses in main memory. The support for virtual memory in the MMU enables the 

construction of an embedded system that has multiple virtual memory maps and a single physical 

memory map. Each task is provided its own virtual memory map for the purpose of compiling 

and linking the code and data, which make up the task. A kernel layer then manages the 

placement of the multiple tasks in physical memory so they have a distinct location in physical 

memory that is different from the virtual location it is designed to run in. 

To permit tasks to have their own virtual memory map, the MMU hardware performs address 

relocation, translating the memory address output by the processor core before it reaches main 

memory. The easiest way to understand the translation process is to imagine a relocation register 

located in the MMU between the core and main memory. 

 



 
When the processor core generates a virtual address, the MMU takes the upper bits of the 

virtual address and replaces them with the contents of the relocation register to create a physical 

address, shown in above Figure. 

The lower portion of the virtual address is an offset that translates to a specific address in 

physical memory. The range of addresses that can be translated using this method is limited by 

the maximum size of this offset portion of the virtual address. 

The above Figure shows an example of a task compiled to run at a starting address of 

0x4000000 in virtual memory. The relocation register translates the virtual addresses of Task 1 

to physical addresses starting at 0x8000000. 

A second task compiled to run at the same virtual address, in this case 0x400000, can be 

placed in physical memory at any other multiple of 0x10000 (64 KB) and mapped to 0x400000 

simply by changing the value in the relocation register. 

A single relocation register can only translate a single area of memory, which is set by the 

number of bits in the offset portion of the virtual address. This area of virtual memory is known 

as a page. The area of physical memory pointed to by the translation process is known as a page 

frame. 

The relationship between pages, the MMU, and page frames shows in below figure. The 

ARM MMU hardware has multiple relocation registers supporting the translation of virtual 

memory to physical memory. The MMU needs many relocation registers to effectively support 

virtual memory because the system must translate many pages to many page frames. 



 
 

Regions Using Pages 
 

virtual memory has a corresponding entry in a page table, a block of virtual memory 

pages map to a set of sequential entries in a page table. Thus, a region can be defined as a 

sequential set of page table entries. The location and size of a region can be held in a software 

data structure while the actual translation data and attribute information is held in the page tables.  

An example of a single task that has three regions: one for text, one for data, and a third 

to support the task stack. Each region in virtual memory is mapped to different areas in physical 

memory. In the figure, the executable code is located in flash memory, and the data and stack 

areas are located in RAM. This use of regions is typical of operating systems that support sharing 

code between tasks. 

With the exception of the master level 1 (L1) page table, all page tables represent 1 MB 

areas of virtual memory. If a region’s size is greater than 1 MB or crosses over the 1 MB 

boundary addresses that separate page tables, then the description of a region must also include a 

list of page tables. The page tables for a region will always be derived from sequential page table 

entries in the master L1 page table. However, the locations of the L2 page tables in physical 

memory do not need to be located sequentially.  
 



 
 

Multitasking and the MMU 
Page tables can reside in memory and not be mapped to MMU hardware. One way to 

build a multitasking system is to create separate sets of page tables, each mapping a unique 

virtual memory space for a task. To activate a task, the set of page tables for the specific task and 

its virtual memory space are mapped into use by the MMU. The other sets of inactive page tables 

represent dormant tasks. This approach allows all tasks to remain resident in physical memory 

and still be available immediately when a context switch occurs to activate it. 

By activating different page tables during a context switch, it is possible to execute 

multiple tasks with overlapping virtual addresses. The MMU can relocate the execution address 

of a task without the need to move it in physical memory. The task’s physical memory is simply 

mapped into virtual memory by activating and deactivating page tables. Figure 14.4 shows three 

views of three tasks with their own sets of page tables running at a common execution virtual 

address of 0x0400000. 

In the first view, Task 1 is running, and Task 2 and Task 3 are dormant. In the second 

view, Task 2 is running, and Task 1 and Task 3 are dormant. In the third view, Task 3 is running, 

and Task 1 and Task 2 are dormant. The virtual memory in each of the three views represents 

memory as seen by the running task. The view of physical memory is the same in all views 

because it represents the actual state of real physical memory. 

 

 



 
 

To switch between tasks requires the following steps: 

 

 Save the active task context and place the task in a dormant state. 

 Flush the caches; possibly clean the D-cache if using a writeback policy. 

 Flush the TLB to remove translations for the retiring task. 

 Configure the MMU to use new page tables translating the virtual memory execution area 

to the awakening task’s location in physical memory. 

 Restore the context of the awakening task. 

 Resume execution of the restored task. 

 

Memory Organization in a Virtual Memory System 
Typically, page tables reside in an area of main memory where the virtual-to-physical 

address mapping is fixed. By “fixed,” we mean data in a page table doesn’t change during normal 

operation, as shown in below Figure. This fixed area of memory also contains the operating 

system kernel and other processes. The MMU, which includes the TLB shown in Figure 14.5, is 

hardware that operates outside the virtual or physical memory space; its function is to translate 

addresses between the two memory spaces. 

When a context switch occurs between two application tasks, the processor in reality 

makes many context switches. It changes from a user mode task to a kernel mode task to perform 

the actual movement of context data in preparation for running the next applica- tion task. It then 

changes from the kernel mode task to the new user mode task of the next context. 

By sharing the system software in a fixed area of virtual memory that is seen across all 

user tasks, a system call can branch directly to the system area and not worry about needing to 

change page tables to map in a kernel process. Making the kernel code and data map to the same 

virtual address in all tasks eliminates the need to change the memory map and the need to have 



an independent kernel process that consumes a time slice. 

 

 

Details of the ARM MMU 
The ARM MMU performs several tasks: It translates virtual addresses into physical 

addresses, it controls memory access permission, and it determines the individual behav- ior of 

the cache and write buffer for each page in memory. When the MMU is disabled, all virtual 

addresses map one-to-one to the same physical address. If the MMU is unable to translate an 

address, it generates an abort exception. The MMU will only abort on translation, permission, 

and domain faults. 

The main software configuration and control components in the MMU are 

 

 Page tables 

 The Translation Lookaside Buffer (TLB) 

 Domains and access permission 

 Caches and write buffer 

 The CP15:c1 control register 

 The Fast Context Switch Extension 

 

Page Tables 

The ARM MMU hardware has a multilevel page table architecture. There are two levels of page 

table: level 1 (L1) and level 2 (L2). 

There is a single level 1 page table known as the L1 master page table that can contain two 



types of page table entry. It can hold pointers to the starting address of level 2 page tables, and 

page table entries for translating 1 MB pages. The L1 master table is also known as a section 

page table. 

The master L1 page table divides the 4 GB address space into 1 MB sections; hence the L1 

page table contains 4096 page table entries. The master table is a hybrid table that acts 

 

 
 

as both a page directory of L2 page tables and a page table translating 1 MB virtual pages called 

sections. If the L1 table is acting as a directory, then the PTE contains a pointer to either an L2 

coarse or L2 fine page table that represents 1 MB of virtual memory. If the L1 master table is 

translatinga1 MB section, then the PTE contains the base address of the 1 MB page frame in 

physical memory. The directory entries and 1 MB section entries can coexist in the master page 

table. 

A coarse L2 page table has 256 entries consuming 1 KB of main memory. Each PTE in a 

coarse page table translatesa4 KB block of virtual memory toa4 KB block in physical memory. A 

coarse page table supports either 4 or 64 KB pages. The PTE in a coarse page contains the base 

address to eithera4 or 64 KB page frame; if the entry translates a 64 KB page, an identical PTE 

must be repeated in the page table 16 times for each 64 KB page. 

A fine page table has 1024 entries consuming 4 KB of main memory. Each PTE in a fine page 

translatesa1 KB block of memory. A fine page table supports 1, 4, or 64 KB pages in virtual 

memory. These entries contain the base address of a 1, 4, or 64 KB page frame in physical 

memory. If the fine table translatesa4 KB page, then the same PTE must be repeated 4 

consecutive times in the page table. If the table translates a 64 KB page, then the same PTE must 

be repeated 64 consecutive times in the page table. 

 

Level 1 Page Table Entries 

The level 1 page table accepts four types of entry: 

 

 A 1 MB section translation entry 

 A directory entry that points to a fine L2 page table 

 A directory entry that points to a coarse L2 page table 

 A fault entry that generates an abort exception 

 

 

 

 

 



 

Level 2 Page Table Entries 

 There are four possible entries used in L2 page tables: 

 

 A large page entry defines the attributes for a 64 KB page frame. 

 A small page entry definesa4 KB page frame. 

 A tiny page entry definesa1 KB page frame. 

 A fault page entry generates a page fault abort exception when accessed. 

                       



The Translation Lookaside Buffer 

 
The TLB is a special cache of recently used page translations. The TLB maps a virtual 

page to an active page frame and stores control data restricting access to the page. The TLB is a 

cache and therefore has a victim pointer and a TLB line replacement policy. In ARM processor 

cores the TLB uses a round-robin algorithm to select which relocation register to replace on a 

TLB miss. 

The TLB in ARM processor cores does not have many software commands available to 

control its operation. The TLB supports two types of commands: you can flush the TLB, and you 

can lock translations in the TLB. 

During a memory access, the MMU compares a portion of the virtual address to all the 

values cached in the TLB. If the requested translation is available, it is a TLB hit, and the TLB 

provides the translation of the physical address. 

If the TLB does not contain a valid translation, it is a TLB miss. The MMU automatically 

handles TLB misses in hardware by searching the page tables in main memory for valid 

translations and loading them into one of the 64 lines in the TLB. The search for valid 

translations in the page tables is known as a page table walk. If there is a valid PTE, the 

hardware copies the translation address from the PTE to the TLB and generates the physical 

address to access main memory. If, at the end of the search, there is a fault entry in the page 

table, then the MMU hardware generates an abort exception. 

During a TLB miss, the MMU may search up to two page tables before loading data to 

the TLB and generating the needed address translation. The cost of a miss is generally one or two 

main memory access cycles as the MMU translation table hardware searches the page tables. The 

number of cycles depends on which page table the translation data is found in. A single-stage 

page table walk occurs if the search ends with the L1 master page table; there is a two-stage page 

table walk if the search ends with an L2 page table. 

 

Single-Step Page Table Walk 

 



Two-Step Page Table Walk 
 

If the MMU ends its search for a page that is 1, 4, 16, or 64 KB in size, then the page 

table walk will have taken two steps to find the address translation. the two-stage process for a 

translation held in a coarse L2 page table. Note that the virtual address is divided into three parts.  

In the first step, the L1 offset portion is used to index into the master L1 page table and 

find the L1 PTE for the virtual address. If the lower two bits of the PTE contain the binary value 

01, then the entry contains the L2 page table base address to a coarse page  

In the second step, the L2 offset is combined with the L2 page table base address found in 

the first stage; the resulting address selects the PTE that contains the translation for the page. The 

MMU transfers the data in the L2 PTE to the TLB, and the base address is combined with the 

offset portion of the virtual address to generate the requested address in physical memory. 

 

 
 

 

 

 

 

 

 

 



Domains and Memory Access Permission 
There are two different controls to manage a task’s access permission to memory: The 

primary control is the domain, and a secondary control is the access permission set in the page 

tables. 

Domains control basic access to virtual memory by isolating one area of memory from 

another when sharing a common virtual memory map. There are 16 different domains that 

 

 

 
can be assigned to 1 MB sections of virtual memory and are assigned to a section by 

setting the domain bit field in the master L1 PTE (see Figure 14.6). 

When a domain is assigned to a section, it must obey the domain access rights assigned to 

the domain. Domain access rights are assigned in the CP15:c3 register and control the processor 

core’s ability to access sections of virtual memory. 

The CP15:c3 register uses two bits for each domain to define the access permitted for 

each of the 16 available domains. Table 14.5 shows the value and meaning of a domain access 

bit field. Figure 14.12 gives the format of the CP15:c3:c0 register, which holds the domain 

access control information. The 16 available domains are labeled from D0 to D15 in the figure.  

Even if you don’t use the virtual memory capabilities provided by the MMU, you can still 

use these cores as simple memory protection units: first, by mapping virtual memory directly to 



physical memory, assigning a different domain to each task, then using domains to protect 

dormant tasks by assigning their domain access to “no access.” 

 

 
 

The Fast Context Switch Extension 
The Fast Context Switch Extension (FCSE) is additional hardware in the MMU that is 

considered an enhancement feature, which can improve system performance in an ARM 

embedded system. The FCSE enables multiple independent tasks to run in a fixed overlap- ping 

area of memory without the need to clean or flush the cache, or flush the TLB during a context 

switch. The key feature of the FCSE is the elimination of the need to flush the cache and TLB.  

 

Without the FCSE, switching from one task to the next requires a change in virtual 

memory maps. If the change involves two tasks with overlapping address ranges, the infor- 

mation stored in the caches and TLB become invalid, and the system must flush the caches and 

TLB. The process of flushing these components adds considerable time to the task switch 

because the core must not only clear the caches and TLB of invalid data, but it must also reload 

data to the caches and TLB from main memory. 

With the FCSE there is an additional address translation when managing virtual mem- 

ory. The FCSE modifies virtual addresses before it reaches the cache and TLB using a special 



relocation register that contains a value known as the process ID. ARM refers to the addresses in 

virtual memory before the first translation as a virtual address (VA), and those addresses after the 

first translation as a modified virtual address(MVA), shown in Figure 14.4. When using the 

FCSE, all modified virtual addresses are active. Tasks are protected by using the domain access 

facilities to block access to dormant tasks. We discuss this in more detail in the next section. 

Switching between tasks does not involve changing page tables; it simply requires 

writing the new task’s process ID into the FCSE process ID register located in CP15. Because a 

task switch does not require changing the page tables, the caches and TLB remain valid after the 

switch and do not need flushing. 

When using the FCSE, each task must execute in the fixed virtual address range from 

0x00000000 to 0x1FFFFFFF and must be located in a different 32 MB area of modified virtual 

memory. The system shares all memory addresses above 0x2000000, and uses domains to 

protect tasks from each other. The running task is identified by its current process ID.  

To utilize the FCSE, compile and link all tasks to run in the first 32 MB block of virtual 

memory (VA) and assign a unique process ID. Then place each task in a different 32 MB 

partition of modified virtual memory using the following relocation formula: 

 

MVA= VA + (0x2000000 ∗  process ID) 

To calculate the starting address of a task partition in modified virtual memory, take a 

value of zero for the VA and the task’s process ID, and use these values in Equation.  

The value held in the CP15:c13:c0 register contains the current process ID. The process 

ID bit field in the register is seven bits wide and supports 128 process IDs. The format of the 

register. 
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 SECTION-I  

1 a) Discuss about various types of ARM Registers. 

b) Describe about the instruction pipeline. 

[7M] 

 

[7M] 

 OR  

2 a) Explain about the interrupts and vector table of ARM. 

b)  Explain about the architecture revision. 

[7M] 

[7M] 

 SECTION-II  

3 a) Explain about the addressing modes of ARM. 

b) With a suitable example, explain about the PSR instructions.  

[7M] 

 

 

[7M] 

 OR  

4 Why do we use controllers in embedded systems? Explain the [14M] 
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 instruction set of ARM programming model-1. 

 SECTION-III  

5 a) What is the difference between instruction set and thumb 

instruction set?  

b) Explain about the Branch instructions and register usage 
instructions. 

[7M] 

 

 

[7M] 

 OR  

6 a) Discuss about Software Interrupt Instructions 
b) Explain about Single-Register and Multi Register Load-Store 

Instructions 

[6M] 

 

[8M] 

 SECTION-IV  

7 a) Explain about the conditional execution and loops in ARM 
programming with a suitable example. 

b) With a suitable example, explain about the assembly code 
using instruction scheduling in ARM programming. 

[7M] 

 

 

[7M] 

 OR  

8 a) Explain about ARM programming with one example. 
  

b) Describe about the integer and floating point with a suitable 
example. 

[7M] 

 

[7M] 

  

SECTION-V 

 

9 a) Explain about the Memory management unit and page tables. 
 

b) Explain about the cache architecture in memory 
management. 

[7M] 

 

[7M] 

 OR  



10 Write a short notes on 

(i) Context switch and  Register allocation 
(ii)  Flushing and cashes 

 

[7 M] 

[7 M] 
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Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each 

SECTION and each Question carries 14marks.                           

*****                  

 

 SECTION-I  

1 a. Describe the complete ARM register set ? 

b. Describe the conditional flags of ARM processor? 

[7M] 

[7M] 

 OR  

2 a. Describe the ARM nomenclature and architecture evaluation ? 

b. Describe the pipelining execution process in ARM ?  

[7M] 

[7M] 

 SECTION-II  

3 Describe various addressing modes in ARM ? [14M] 

 OR  

4 

 

Describe load-store instruction in detail ? [14M] 
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 SECTION-III  

5 Explain various thumb data processing instruction ? [14M] 

 OR  

6 Explain with example single-register and multiple-register load-store instruction? [14M] 

 SECTION-IV  

7 a. Explain pointer aliasing with an example? 
b. Explain with example conditional execution ? 

[7M] 

[7M] 

 OR  

8 a. ARM9TDMI processor performs various operations in parallel explain them in detail? 
b.  What is pipeline interlock explain with example ? 

[10M] 

 

[4M] 

 SECTION-V  

9 a. How is memory organised in MMU? 
b. Explain access permission in memory management 

[7M] 

[7M] 

 OR  

10 a. Explain flush and clean operation in cache? 
b. What are the main software configuration and control components in MMU? Explain 

in detail any two? 

[7M] 

[7M] 
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Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from 

each SECTION and each Question carries 15 marks. 
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 SECTION-I  

1 a) With a neat sketch discuss ARM programming model. 

b) What do you mean by pipelining? Briefly discuss about five stage pipeline in 

ARM.  

[15M] 

 OR  

2 Explain how to measure the processor performance of an embedded hardware in 

detail and explain the major application areas of embedded system. 

[15M] 

 SECTION-II  

3 a)Explain Load, store instructions with examples. 

b) What is the primary difference between a load/store architecture and a 

register/memory architecture 

[15M] 

 OR  

4 

 

a) What are the unique features of the ARM instruction set? Explain 
b)  Briefly explain the ARM data processing instructions in detail with suitable 

example.  

[7M] 

[8M] 

 SECTION-III  

5 Explain processor modes of ARM7 , also specify different branch instruction used to 

exchange branch from ARM mode to THUMB mode. 

[15M] 
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 OR  

6 Draw the format of ARM data processing instructions 

Explain the various data operations in ARM. 

[15M] 

 SECTION-IV  

7 a) Explain the different features of FPA10. 

b) Discuss the coprocessor Register transfer instructions? Why the instruction cannot 

used for Register transfer of CP15 coprocessor.  

[15M] 

 OR  

8 Briefly explain the functions, pointers and structures using in ARM C programming [15M] 

 SECTION-V  

9 a) With a neat diagram discuss set associate cache and fully associative cache. 

b) Elaborate advantages of having embedded memory on chip? How it is useful in 

increasing the efficiency of the system. 

[15M] 

 OR  

10 What are the different types of memories used in embedded system design? Explain 

each with examples. 

[15M] 

 **********  
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